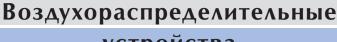
КАТАЛОГ

ОБОРУДОВАНИЕ ДЛЯ СИСТЕМ ВЕНТИЛЯЦИИ ВОЗДУХА

ИЗДАНИЕ №8

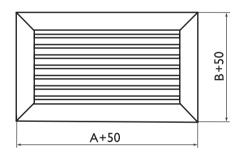
Содержание:

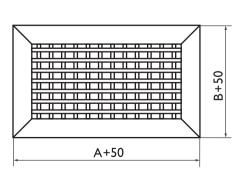

воздухораспределительные устроиства
Решетки
АМН, АМР, АДН, АДР384
ПРН, ПРР388
PCH, PCP390
AAH, AAP392
АМН-К, АДН-К, АМР-К, АДР-К394
ПРН-К, ПРР-К398
PCH-K, PCP-K400
АЛН-К, АЛР-К, АБН, АБР402
КМУ, КДУ, КМР, КДР, КМН, КДН405
APC, AAC, ABC409
Переточные решетки
АП411
Напольные воздухораспределители
РНБ, РНР решетки412
FDC диффузоры414
Диффузоры
АПН, АПР416
4АПН-П, 4АПР-П, 4АПН-С, 4АПР-С418
VSM420
VEM421
ДПУ-М, ДПУ-К422
ДПУ-С425
ДПУ-В426
ДКУ427
1ДКФ, 2ДКФ428
1ДКЗ, 2ДКЗ429
1ДПЗ, 2ДПЗ430
1DLKA, 2DLKA431
1DLKE434
1DLRA, 2DLRA437
DLRH440
1DLRE, 2DLRE443
DLRV446
DLRZ449
PLR камеры статического давления452
DZA453
DZU459
Сопловые воздухораспределители
SMK462
CDV CLV CTV

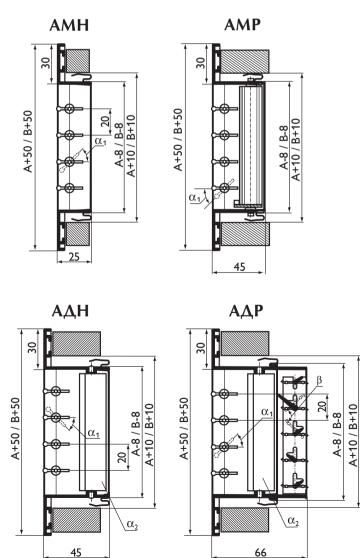
Панельные воздухораспределители	
1ВПС, 1ВПСР	468
2ВПС, 2ВПСР	470
1ВПТ, 1ВПТР	473
ВПМ, ВПМР	478
1СПП, 1СППР	481
2СПП, 2СППР	482
3ДПЗ, 3ДПЗР	484
1ВПЗ, 1ВПЗР	486
1BKC, 1BKCP	488
1BKT, 1BKTP, 2BKT, 2BKTP	490
1СКП, 1СКПР	495
3ДКЗ, 3ДКЗР	496
1BK3, 1BK3P	497
Низкоскоростные воздухораспределители	
1ВНК, 1ВНП, 1ВНУ	498
2BHA	500
2BHB	502
3BHY	504
Воздухораспределители «Генератор комфорта»	
1BГK, 2BГK	506
1ВПК, 1ВПКР	508
Воздухораздающие блоки для «чистых помещений»	
REA RETIMARECAA	E10

устройства

Решетки АМН, АМР, АДН, АДР


Решетки АМН, АМР, АДН, АДР предназначены для подачи и удаления воздуха системами вентиляции и кондиционирования в помещениях различного назначения.


Решетки АМН и АМР снабжены одним, а АДН и АДР двумя рядами индивидуально регулируемых жалюзи, предназначенных для изменения направления и характеристик приточной струи. Жалюзи установлены в пластиковые втулки, которые облегчают их поворот при регулировании.


Решетки АМР и АДР дополнительно оснащены встроенным регулятором расхода воздуха. Регулирование расхода осуществляется вручную, без использования инструмента, при помощи специального флажкового механизма.

Минимальный размер решетки 100×100 мм, максимальный — 1200 мм по одной из сторон, с шагом 50 мм; возможно изготовление решеток с нестандартным шагом (см. Приложение 4 на стр. 670). При размере A (B) > 550 мм для обеспечения прочности конструкции в решетках устанавливается перемычка.

Решетки изготавливаются из алюминия и окрашиваются методом порошкового напыления в белый цвет (RAL 9016). При изготовлении на заказ возможна окраска решеток в любой цвет по каталогу RAL или текстурирование (см. Приложение 3 на стр. 669).

Данные для подбора решеток АМН, АМР, АДН, АДР при подаче или удалении воздуха ($\alpha_1 = \alpha_2 = 0^\circ$)

		L _w A≤20 дБ(А), ∆Р _{полн} ≤1 Па							L _{wA} = 25 дБ(А)					L _{wA} = 35 дБ(А)					L _{wA} = 45 дБ(А)			
Размер А×В, мм	F ₀ , M ²	L ₀ , м ³ /ч	бойно при V	/ _x , m/c	L ₀ , м ³ /ч	бойно при \	/ _x , m/c	L ₀ , м ³ /ч	ΔР _{полн} , Па	бойно при \	′ _x , м/с	L ₀ , м ³ /ч	ΔР _{полн} , Па	бо п	Дально- бойность, м при V_x , м/с		L ₀ , м ³ /ч	ΔР _{полн} , Па	бойно при \	Дально- бойность, м при V _x , м/с		
			0,2	0,5		0,2	0,5			0,2	0,5			0,2	0,5	0,75			0,5	0,75		
200 × 100	0,018	30	1,9	0,7	60	3,7	1,5	180	6	11	4,5	280	16	17	7,0	4,6	350	25	8,7	5,8		
300 × 100	0,027	50	2,5	1,0	80	4,1	1,6	240	5	12	4,9	360	12	18	7,3	4,9	500	22	10	6,8		
400 × 100	0,036	65	2,9	1,1	100	4,4	1,8	300	5	13	5,3	400	8	18	7,0	4,7	580	17	10	6,8		
500 × 100	0,045	80	3,1	1,3	120	4,7	1,9	370	4	15	5,8	520	9	20	8,2	5,4	700	16	11	7,3		
600 × 100	0,054	100	3,6	1,4	150	5,4	2,2	420	4	15	6,0	600	8	22	8,6	5,7	780	14	11	7,5		
150 × 150	0,020	35	2,1	0,8	60	3,5	1,4	180	5	11	4,2	280	13	16	6,6	4,4	350	20	8,2	5,5		
300×150	0,041	75	3,1	1,2	120	4,9	2,0	370	5	15	6,1	520	10	21	8,6	5,7	700	19	12	7,7		
400 × 150	0,055	100	3,6	1,4	150	5,3	2,1	420	4	15	6,0	600	8	21	8,5	5,7	780	13	11	7,4		
500 × 150	0,070	130	4,1	1,6	180	5,7	2,3	530	4	17	6,7	800	8	25	10	6,7	970	12	12	8,1		
600 × 150	0,084	150	4,3	1,7	200	5,8	2,5	600	3	17	6,9	900	7	26	10	6,9	1130	12	13	8,7		
700 × 150	0,098	170	4,5	1,8	240	6,4	2,6	700	3	19	7,5	1100	8	29	12	7,8	1300	11	14	9,1		
800 × 150	0,112	200	5,0	2,0	250	6,2	2,5	740	3	18	7,4	1250	8	31	12	8,3	1500	12	15	10		
200×200	0,036	70	3,1	1,2	100	4,4	1,8	300	5	13	5,3	400	8	18	7,0	4,7	580	17	10	6,8		
300×200	0,055	100	3,6	1,4	150	5,3	2,1	420	4	15	6,0	600	8	21	8,5	5,7	780	13	11	7,4		
400 × 200	0,074	130	4,0	1,6	180	5,5	2,2	530	3	16	6,5	800	8	25	10	6,5	970	11	12	7,9		
500×200	0,093	160	4,4	1,7	220	6,0	2,4	650	3	18	7,1	1050	8	29	11	7,7	1260	12	14	9,2		
600×200	0,112	200	5,0	2,0	250	6,2	2,5	740	3	18	7,4	1250	8	31	12	8,3	1500	12	15	10		
700×200	0,131	230	5,3	2,1	270	6,2	2,5	820	3	19	7,6	1400	7	-	13	8,6	1550	9	14	9,5		
800 × 200	0,150	270	5,8	2,3	300	6,5	2,6	900	2	19	7,7	1500	6	-	13	8,6	1650	8	14	9,5		
1000×200	0,188	340	6,5	2,6	350	6,7	2,7	1100	2	21	8,5	1600	5	-	12	8,2	2000	7	15	9,9		
300 imes 300	0,084	150	4,3	1,7	200	5,8	2,3	600	3	17	6,9	900	7	26	10	6,9	1130	12	13	8,7		
400 × 300	0,113	200	5,0	2,0	250	6,2	2,5	740	3	18	7,3	1250	8	-	12	8,3	1500	11	15	10		
500 × 300	0,142	250	5,5	2,2	290	6,4	2,6	860	2	19	7,6	1450	7	-	13	8,6	1600	8	14	9,4		
600×300	0,171	300	6,0	2,4	320	6,4	2,6	1000	2	20	8,1	1550	5	-	12	8,3	1800	7	15	9,7		
700 × 300	0,200	350	6,5	2,6	400	7,5	3,0	1200	2	22	8,9	1700	5	-	13	8,4	2100	7	16	10		
800 × 300	0,229	400	7,0	2,8	500	8,7	3,5	1300	2	23	9,1	1900	4	-	13	8,8	2200	6	15	10		
1000 × 300	0,287	500	7,8	3,1	600	9,3	3,7	1500	2	23	9,3	2200	4	_	14	9,1	2800	6	17	12		

$\Delta P_{\text{полн}}^{\text{ AMP}/\text{АДР}} = \text{K} \times \Delta P_{\text{полн}}$
$L_{_{\mathrm{wA}}}^{\mathrm{AMP}/\mathrm{AJP}} = L_{_{\mathrm{wA}}} + \Delta L_{_{\mathrm{wA}}}$

% открытия регулятора расхода	100% β=0°	50% β=60°	30% β=90°
K	1,2	3,7	7,3
ΔL_{WA} , $\Delta \overline{b}(A)$	2	5	7

устройства

Данные для подбора решеток АМН, АМР при подаче воздуха ($\alpha_1 = 45^{\circ}$)

		L _{wA} ≤20 дБ(А), ∆Р _{полн} ≤1 Па					$L_{wA} = 25$	Б ДБ(А)			L _{wA}	=35 дЕ	5(A)		L _{wA} =45 дБ(A)				
	Размер А×В, мм	F ₀ , M ²	Дально- L ₀ , бойность, м м ³ /ч при V _x , м/с		L ₀ , $\Delta P_{полн}$, м ³ /ч Па		Дал бойно при \	,	L ₀ , м ³ /ч	ΔР _{полн} , Па	бо	Дально- риность, ри V _x , м	М	L ₀ , м ³ /ч	ΔР _{полн} , Па	Дально- бойность, м при V _x , м/с			
				0,2	0,5			0,2	0,5			0,2	0,5	0,75			0,2	0,5	0,75
2	200×100	0,018	30	1,1	0,4	55	2	2,0	0,8	110	8	4,1	1,6	1,1	200	26	7,5	3,0	2,0
3	300×100	0,027	40	1,2	0,5	80	2	2,4	1,0	155	7	4,7	1,9	1,3	280	23	8,5	3,4	2,3
4	100×100	0,036	50	1,3	0,5	100	2	2,6	1,1	200	7	5,3	2,1	1,4	360	21	9,5	3,8	2,5
5	500×100	0,045	60	1,4	0,6	115	2	2,7	1,1	240	6	5,7	2,3	1,5	430	19	10	4,1	2,7
	500×100	0,054	65	1,4	0,6	130	2	2,8	1,1	260	5	5,6	2,2	1,5	500	18	11	4,3	2,9
	150×150	0,020	30	1,1	0,4	60	2	2,1	0,8	120	8	4,2	1,7	1,1	215	24	7,6	3,0	2,0
	300×150	0,041	55	1,4	0,5	110	2	2,7	1,1	220	6	5,4	2,2	1,4	400	20	9,9	4,0	2,6
	100×150	0,055	70	1,5	0,6	140	2	3,0	1,2	280	5	6,0	2,4	1,6	510	18	11	4,3	2,9
	500×150	0,070	80	1,5	0,6	160	1	3,0	1,2	330	5	6,2	2,5	1,7	610	16	12	4,6	3,1
	500×150	0,084	90	1,6	0,6	180	1	3,1	1,2	370	4	6,4	2,6	1,7	700	14	12	4,8	3,2
	700×150	0,098	100	1,6	0,6	205	1	3,3	1,3	420	4	6,7	2,7	1,8	790	14	13	5,0	3,4
8	800×150	0,112	110	1,6	0,7	225	1	3,4	1,3	470	4	7,0	2,8	1,9	890	14	13	5,3	3,5
2	200×200	0,036	50	1,3	0,5	100	2	2,6	1,1	200	7	5,3	2,1	1,4	360	21	9,5	3,8	2,5
	300×200	0,055	70	1,5	0,6	135	2	2,9	1,2	280	5	6,0	2,4	1,6	510	18	11	4,3	2,9
	100×200	0,074	80	1,5	0,6	160	1	2,9	1,2	340	5	6,2	2,5	1,7	635	15	12	4,7	3,1
	500×200	0,093	100	1,6	0,7	205	1	3,4	1,3	420	5	6,9	2,8	1,8	780	15	13	5,1	3,4
	500×200	0,112	110	1,6	0,7	225	1	3,4	1,3	470	4	7,0	2,8	1,9	890	14	13	5,3	3,5
	700×200	0,131	130	1,8	0,7	260	1	3,6	1,4	540	4	7,5	3,0	2,0	1000	12	14	5,5	3,7
	300×200	0,150	145	1,9	0,7	290	1	3,7	1,5	600	3	7,7	3,1	2,1	1140	12	15	5,9	3,9
	000×200	0,188	170	2,0	0,8	340	1	3,9	1,6	700	3	8,1	3,2	2,2	1350	11	16	6,2	4,2
	300×300	0,084	95	1,6	0,7	190	1	3,3	1,3	385	5	6,6	2,7	1,8	720	15	12	5,0	3,3
	100×300	0,113	110	1,6	0,7	225	1	3,3	1,3	470	4	7,0	2,8	1,9	890	13	13	5,3	3,5
	300×300	0,142	130	1,7	0,7	265	1	3,5	1,4	560	3	7,4	3,0	2,0	1070	12	14	5,7	3,8
	500×300	0,171	155	1,9	0,7	310	1	3,7	1,5	650	3	7,9	3,1	2,1	1250	11	15	6,0	4,0
	700×300	0,200	180	2,0	0,8	360	1	4,0	1,6	750	3	8,4	3,4	2,2	1420	11	16	6,4	4,2
	300×300	0,229	200	2,1	0,8	400	1	4,2	1,7	830	3	8,7	3,5	2,3	1600	11	17	6,7	4,5
10	000×300	0,287	230	2,1	0,9	460	1	4,3	1,7	980	2	9,1	3,7	2,4	1900	9	18	7,1	4,7

$\Delta P_{\text{полн}}^{\text{ AMP}} = K \times \Delta P_{\text{полн}}$
$L_{wA}^{AMP} = L_{wA} + \Delta L_{wA}$

% открытия регулятора расхода	100% β=0°	50% β=60°	30% $\beta = 90^{\circ}$
K	1,0	1,8	2,5
ΔL_{wA} , д $\overline{b}(A)$	0	5	7

Данные для подбора решеток АДН, АДР при подаче воздуха ($\alpha_1 = 45^{\circ}$, $\alpha_2 = 0^{\circ}$)

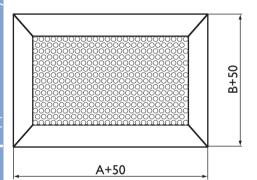
		(A), Па	L _{wA} = 25 дБ(А)				L _{wA} =35 дБ(A)					L _{wA} = 45 дБ(A)						
Размер А×В, мм	F ₀ , M ²	L ₀ , м ³ /ч	Дал бойно при V	СТЬ, М / _х , м/с	L ₀ , м ³ /ч	ΔР _{полн} , Па	бойно при \	ьно- сть, м / _х , м/с	L ₀ , м ³ /ч	ΔР _{полн} , Па	бо п	Дально- бойность, м при V _x , м/с		L ₀ , $\Delta P_{полн}$, $M^3/4$ Па		Дально- бойность, м при V _x , м/с		
			0,2	0,5			0,2	0,5			0,2	0,5	0,75			0,2	0,5	0,75
200 × 100	0,018	30	1,1	0,4	55	3	2,0	0,8	110	10	4,1	1,6	1,1	200	34	7,5	3,0	2,0
300 × 100	0,027	40	1,2	0,5	80	2	2,4	1,0	155	9	4,7	1,9	1,3	280	30	8,5	3,4	2,3
400 × 100	0,036	50	1,3	0,5	100	2	2,6	1,1	200	9	5,3	2,1	1,4	360	28	9,5	3,8	2,5
500 × 100	0,045	60	1,4	0,6	115	2	2,7	1,1	240	8	5,7	2,3	1,5	430	25	10	4,1	2,7
600 × 100	0,054	65	1,4	0,6	130	2	2,8	1,1	260	6	5,6	2,2	1,5	500	24	11	4,3	2,9
150×150	0,020	30	1,1	0,4	60	3	2,1	0,8	120	10	4,2	1,7	1,1	215	32	7,6	3,0	2,0
300×150	0,041	55	1,4	0,5	110	2	2,7	1,1	220	8	5,4	2,2	1,4	400	26	9,9	4,0	2,6
400 × 150	0,055	70	1,5	0,6	140	2	3,0	1,2	280	7	6,0	2,4	1,6	510	24	11	4,3	2,9
500 × 150	0,070	80	1,5	0,6	160	1	3,0	1,2	330	6	6,2	2,5	1,7	610	21	12	4,6	3,1
600 × 150	0,084	90	1,6	0,6	180	1	3,1	1,2	370	5	6,4	2,6	1,7	700	19	12	4,8	3,2
700 × 150	0,098	100	1,6	0,6	205	1	3,3	1,3	420	5	6,7	2,7	1,8	790	18	13	5,0	3,4
800×150	0,112	110	1,6	0,7	225	1	3,4	1,3	470	5	7,0	2,8	1,9	890	18	13	5,3	3,5
200×200	0,036	50	1,3	0,5	100	2	2,6	1,1	200	9	5,3	2,1	1,4	360	28	9,5	3,8	2,5
300×200	0,055	70	1,5	0,6	135	2	2,9	1,2	280	7	6,0	2,4	1,6	510	24	11	4,3	2,9
400 × 200	0,074	80	1,5	0,6	160	1	2,9	1,2	340	6	6,2	2,5	1,7	635	20	12	4,7	3,1
500×200	0,093	100	1,6	0,7	205	1	3,4	1,3	420	6	6,9	2,8	1,8	780	20	13	5,1	3,4
600×200	0,112	110	1,6	0,7	225	1	3,4	1,3	470	5	7,0	2,8	1,9	890	18	13	5,3	3,5
700×200	0,131	130	1,8	0,7	260	1	3,6	1,4	540	5	7,5	3,0	2,0	1000	16	14	5,5	3,7
800 × 200	0,150	145	1,9	0,7	290	1	3,7	1,5	600	4	7,7	3,1	2,1	1140	16	15	5,9	3,9
1000×200	0,188	170	2,0	0,8	340	1	3,9	1,6	700	4	8,1	3,2	2,2	1350	14	16	6,2	4,2
300×300	0,084	95	1,6	0,7	190	1	3,3	1,3	385	6	6,6	2,7	1,8	720	20	12	5,0	3,3
400 × 300	0,113	110	1,6	0,7	225	1	3,3	1,3	470	5	7,0	2,8	1,9	890	17	13	5,3	3,5
500 × 300	0,142	130	1,7	0,7	265	1	3,5	1,4	560	4	7,4	3,0	2,0	1070	16	14	5,7	3,8
600 × 300	0,171	155	1,9	0,7	310	1	3,7	1,5	650	4	7,9	3,1	2,1	1250	15	15	6,0	4,0
700 × 300	0,200	180	2,0	0,8	360	1	4,0	1,6	750	4	8,4	3,4	2,2	1420	14	16	6,4	4,2
800 × 300	0,229	200	2,1	0,8	400	1	4,2	1,7	830	4	8,7	3,5	2,3	1600	14	17	6,7	4,5
1000 × 300	0,287	230	2,1	0,9	460	1	4,3	1,7	980	3	9,1	3,7	2,4	1900	12	18	7,1	4,7

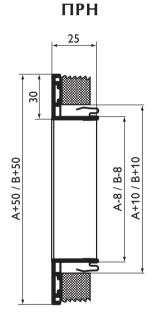
$\Delta P_{\text{полн}}^{\text{АДР}} = K \times \Delta P_{\text{полн}}$
$L_{\rm wA}^{\rm AJP} = L_{\rm wA} + \Delta L_{\rm wA}$

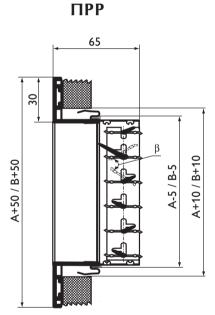
% открыг регулятора р		100% β=0°	50% β=60°	30% $\beta = 90^{\circ}$		
K		1,0	1,8	2,5		
ΔL _{wA} , дБ	(A)	0	5	7		

устройства

Перфорированные решетки ПРН, ПРР


Перфорированные решетки ПРН, ПРР предназначены для подачи и удаления воздуха системами вентиляции и кондиционирования в помещениях различного назначения. Кроме того, решетки могут быть установлены в отопительных каналах каминов, а также в виде декоративных панелей для приборов отопления.


Решетки ПРН представляют собой раму прямоугольной формы с установленной в ней перфорированной панелью. Коэффициент живого сечения перфорации $K_{\text{ж.с.}} = 0,6$.


Решетки ПРР дополнительно оснащены регулятором расхода воздуха.

Минимальный размер решетки 100×100 мм, максимальный -1200×300 мм, с шагом 50 мм; возможно изготовление решеток с нестандартным шагом (см. Приложение 4 на стр. 670).

Корпус решетки изготавливается из алюминия, перфорированная панель - из стали и окрашивается методом порошкового напыления в белый цвет (RAL 9016). При изготовлении на заказ возможна окраска решеток в любой цвет по каталогу RAL или текстурирование (см. Приложение 3 на стр. 669).

Данные для подбора решеток ПРН, ПРР при удалении воздуха

Размер	F ₀ ,	L _{wA} = 2!	5 дБ(A)	$L_{wA} = 3$	5 дБ(А)	$L_{wA} = 45$	5 дБ (А)
газмер А×В, мм	го, м ²	L ₀ , м³/ч	ΔР _{полн} , Па	L ₀ , м³/ч	ΔР _{полн} , Па	L ₀ , м³/ч	ΔР _{полн} , Па
200 × 100	0,018	170	11	240	21	330	41
300 imes 100	0,027	250	11	340	19	500	41
400 × 100	0,036	320	10	450	19	650	39
500 imes 100	0,045	380	8	540	17	760	34
600 × 100	0,054	480	10	650	17	950	37
150 × 150	0,020	190	11	260	20	370	41
300 imes 150	0,041	360	9	520	19	750	41
400 imes 150	0,055	500	10	700	19	1000	41
500 × 150	0,070	600	9	900	20	1200	36
600 imes 150	0,084	800	11	1100	20	1400	33
700 imes 150	0,098	850	9	1300	21	1700	36
800 imes 150	0,112	1000	10	1500	21 20	1900	34
200×200	0,036	330	10	470		680	42
300×200	0,055	500	10 15	700	19	1000	41
400×200	0,074	830		1200	32	1550	52
500 imes 200	0,093	840	10	1300	24	1700	41
600 imes 200	0,112	1000	10	1500	21	1900	34
700 imes 200	0,131	1200	10	1700	20	2200	34
800 imes 200	0,150	1300	9	1800	17	2300	29
1000 imes 200	0,188	1700	10	2200	17	3000	30
300 imes 300	0,084	800	11	1200	25	1600	44
400 imes 300	0,113	1000	10	1500	21	1900	34
500 imes 300	0,142	1250	9	1 <i>7</i> 50	18	2200	29
600 imes 300	0,171	1500	9	2000	16	2600	28
700 imes 300	0,200	1800	10	2400	17	3000	28
800 imes 300	0,229	2000	9	2600	16	3600	30
1000 imes 300	0,287	2400	8	3200	15	4300	28

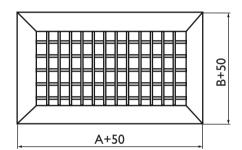
В решетках с регулятором расхода табличные значения $\Delta P_{\text{полн}}$ и L_{wA} корректируются:

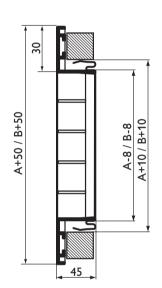
$\Delta P_{\text{полн}}^{\text{ПРР}} = K \times \Delta P_{\text{полн}}$
$L_{\rm wA}^{\rm \Pi PP} = L_{\rm wA} + \Delta L_{\rm wA}$

% открытия регулятора расхода	100% β=0°	50% $\beta = 60^{\circ}$	30% $\beta = 90^{\circ}$
K	1,2	1,8	2,5
ΔL _{wA} , дБ(A)	0	5	7

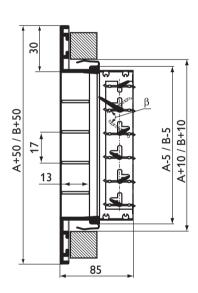
устройства

Сотовые решетки РСН и РСР


Сотовые решетки РСН и РСР предназначены для удаления воздуха системами вентиляции и кондиционирования в помещениях различного назначения.


Решетки РСН, РСР представляют собой раму прямоугольной формы с неподвижно установленной в ней объемной решеткой в виде квадратных "сот". Коэффициент живого сечения "сот" $K_{\text{ж.с.}} = 0.83$.

Решетки РСР дополнительно оснащены регулятором расхода воздуха.


Минимальный размер решетки 100×100 мм, максимальный — 1200×600 мм, с шагом 50 мм; возможно изготовление решеток с нестандартным шагом (см. Приложение 4 на стр. 670). При размере A (B) > 650 мм для обеспечения прочности конструкции в решетках устанавливается перемычка.

Решетки изготавливаются из алюминия и окрашиваются методом порошкового напыления в белый цвет (RAL 9016). При изготовлении на заказ возможна окраска решеток в любой цвет по каталогу RAL или текстурирование (см. Приложение 3 на стр. 669).

PCH

PCP

Данные для подбора решеток РСН, РСР при удалении воздуха

Размер	F ₀ ,	$L_{wA} = 2$	5 дБ(A)	L _{wA} = 3!	5 д Б(А)	L _{wA} = 45 дБ(А)			
А×В, мм	M ²	L ₀ , м³/ч	ΔР _{полн} , Па	L ₀ , м³/ч	ΔР _{полн} , Па	L ₀ , м³/ч	ΔР _{полн} , Па		
200 × 100	0,018	180	4	250	8	380	19		
300 × 100	0,027	260	4	350	7	520	15		
400 × 100	0,036	350	4	460	7	700	16		
500 × 100	0,045	420	4	580	7	800	13		
600 × 100	0,054	450	3	680	7	900	11		
150 × 150	0,020	200	4	280	8	400	17		
300 × 150	0,041	380	4	550	7	850	18		
400 × 150	0,055	500	3	750	8	1000	14		
500 × 150	0,070	600	3	900	7	1400	17		
600 × 150	0,084	700	3	1000	6	1500	14		
700 × 150	0,098	800	3	1200	6	1800	14		
800 × 150	0,112	1000	3	1500	7	1900	12		
200 imes 200	0,036	350	4	460	7	700	16		
300 imes 200	0,055	500	3	750	8	1000	14		
400 × 200	0,074	650	3	900	6	1400	15		
500 imes 200	0,093	800	3	1200	7	1700	14		
600 imes 200	0,112	980	3	1500	7	2000	14		
700 × 200	0,131	1050	3	1600	6	2200	12		
800 × 200	0,150	1250	3	1800	6	2600	12		
1000 × 200	0,188	1500	3	2000	5	3000	10		
300 imes 300	0,084	650	2	1000	6	1500	14		
400 × 300	0,113	1000	3	1400	6	1880	11		
500 × 300	0,142	1250	3	1800	7	2500	13		
600 × 300	0,171	1400	3	2000	6	2800	11		
700 × 300	0,200	1600	3	2200	5	3400	12		
800 × 300	0,229	1800	3	2500	5	3800	11		
1000 × 300	0,287	2000	2	3200	5	4000	8		

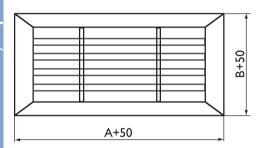
В решетках с регулятором расхода табличные значения $\Delta P_{\text{полн}}$ и L_{wA} корректируются:

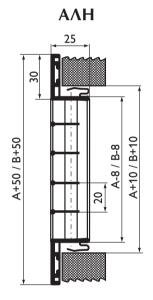
$\Delta P_{\text{полн}}^{\text{PCP}} = K \times \Delta P_{\text{полн}}$
$L_{\rm wA}^{\rm PCP} = L_{\rm wA} + \Delta L_{\rm wA}$

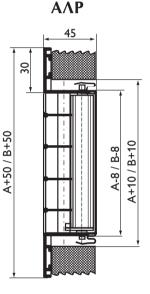
% открытия регулятора расхода	100% β=0°	50% β=60°	30% $\beta = 90^{\circ}$
K	1,4	5,8	11,3
ΔL _{wA} , дБ(A)	2	5	7

устройства

Решетки АЛН, АЛР


Решетки АЛН, АЛР предназначены для подачи и удаления воздуха системами вентиляции и кондиционирования в помещениях различного назначения.


Решетки АЛН, АЛР снабжены одним рядом неподвижных горизонтальных жалюзи.


Решетки АЛР дополнительно оснащены встроенным регулятором расхода воздуха. Регулирование расхода осуществляется вручную, без использования инструмента, при помощи специального флажкового механизма.

Минимальный размер решетки 100×100 мм, максимальный — 1000×300 мм по одной из сторон, с шагом 50 мм; возможно изготовление решеток с нестандартным шагом (см. Приложение 4 на стр. 670).

Решетки изготавливаются из алюминия и окрашиваются методом порошкового напыления в белый цвет (RAL 9016). При изготовлении на заказ возможна окраска решеток в любой цвет по каталогу RAL или текстурирование (см. Приложение 3 на стр. 669).

Данные для подбора решеток АЛН, АЛР при подаче или удалении воздуха

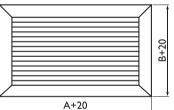
		L	_{wA} ≤20	дБ(А)	, ΔP _{πολ}	_н ≤1 П	a	I	-wA = 25	5 дБ(А)		L _{wA} =	=35 д	Б(А)		L _{wA} = 45 дБ(А)			
Размер А×В, мм	F ₀ , M ²	L ₀ , м ³ /ч	Дал бойно при V	сть, м / _х , м/с	L ₀ , м ³ /ч	бойно при \	/ _x , m/c	L ₀ , м ³ /ч	ΔР _{полн} , Па	бойно при \	/ _x , m/c	L ₀ , м ³ /ч	ΔР _{полн} , Па	бо п	∆ально йность ри V _x , м	, м /с	L ₀ , м ³ /ч	ΔР _{полн} , Па	бойно при \	ьно- ость, м / _х , м/с
			0,2	0,5		0,2	0,5			0,2	0,5			0,2	0,5	0,75			0,5	0,75
200 × 100	0,018	30	1,9	0,7	60	3,7	1,5	180	6	11	4,5	280	16	17	7,0	4,6	350	25	8,7	5,8
300 × 100	0,027	50	2,5	1,0	80	4,1	1,6	240	5	12	4,9	360	12	18	7,3	4,9	500	22	10	6,8
400 × 100	0,036	65	2,9	1,1	100	4,4	1,8	300	5	13	5,3	400	8	18	7,0	4,7	580	17	10	6,8
500 × 100	0,045	80	3,1	1,3	120	4,7	1,9	370	4	15	5,8	520	9	20	8,2	5,4	700	16	11	7,3
600 × 100	0,054	100	3,6	1,4	150	5,4	2,2	420	4	15	6,0	600	8	22	8,6	5,7	780	14	11	7,5
150 × 150	0,020	35	2,1	0,8	60	3,5	1,4	180	5	11	4,2	280	13	16	6,6	4,4	350	20	8,2	5,5
300 × 150	0,041	75	3,1	1,2	120	4,9	2,0	370	5	15	6,1	520	10	21	8,6	5,7	700	19	12	7,7
400 × 150	0,055	100	3,6	1,4	150	5,3	2,1	420	4	15	6,0	600	8	21	8,5	5,7	780	13	11	7,4
500 × 150	0,070	130	4,1	1,6	180	5,7	2,3	530	4	17	6,7	800	8	25	10	6,7	970	12	12	8,1
600 × 150	0,084	150	4,3	1,7	200	5,8	2,5	600	3	17	6,9	900	7	26	10	6,9	1130	12	13	8,7
700 × 150	0,098	170	4,5	1,8	240	6,4	2,6	700	3	19	7,5	1100	8	29	12	7,8	1300	11	14	9,1
800 × 150	0,112	200	5,0	2,0	250	6,2	2,5	740	3	18	7,4	1250	8	31	12	8,3	1500	12	15	10
200×200	0,036	70	3,1	1,2	100	4,4	1,8	300	5	13	5,3	400	8	18	7,0	4,7	580	17	10	6,8
300×200	0,055	100	3,6	1,4	150	5,3	2,1	420	4	15	6,0	600	8	21	8,5	5,7	780	13	11	7,4
400 × 200	0,074	130 160	4,0	1,6	180 220	5,5	2,2	530 650	3	16 18	6,5	800 1050	8	25 29	10 11	6,5	970 1260	11 12	12 14	7,9
500×200 600×200	0,093	200	4,4 5,0	1,7 2,0	250	6,0 6,2	2,4 2,5	740	3	18	7,1 7,4	1250	8	31	12	7,7 8,3	1500	12	15	9,2
700×200	0,112	230	5,3	2,0	270	6,2	2,5	820	3	19	7,4	1400	7	-	13	8,6	1550	9	14	9,5
800×200	0,151	270	5,8	2,1	300	6,5	2,5	900	2	19	7,0	1500	6	_	13	8,6	1650	8	14	9,5
1000×200 1000×200	0,130	340	6,5	2,6	350	6,7	2,7	1100	2	21	8,5	1600	5	_	12	8,2	2000	7	15	9,9
300×300	0.084	150	4,3	1,7	200	5,8	2,3	600	3	17	6,9	900	7	26	10	6,9	1130	12	13	8,7
400 × 300	0,113	200	5,0	2,0	250	6,2	2,5	740	3	18	7,3	1250	8	_	12	8,3	1500	11	15	10
500 × 300	0,142	250	5,5	2,2	290	6,4	2,6	860	2	19	7,6	1450	7	_	13	8,6	1600	8	14	9,4
600×300	0,171	300	6,0	2,4	320	6,4	2,6	1000	2	20	8,1	1550	5	_	12	8,3	1800	7	15	9,7
700 × 300	0,200	350	6,5	2,6	400	7,5	3,0	1200	2	22	8,9	1700	5	_	13	8,4	2100	7	16	10
800 × 300	0,229	400	7,0	2,8	500	8,7	3,5	1300	2	23	9,1	1900	4	_	13	8,8	2200	6	15	10
1000 × 300	0,287	500	7,8	3,1	600	9,3	3,7	1500	2	23	9,3	2200	4	_	14	9,1	2800	6	17	12

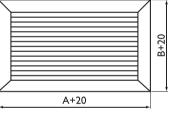
$\Delta P_{\text{полн}}^{\text{ AJIP}} = K \times \Delta P_{\text{полн}}$
$L_{\rm wA}^{\rm AJIP} = L_{\rm wA} + \Delta L_{\rm wA}$

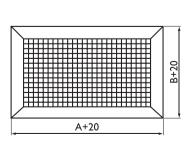
% открытия регулятора расхода	100% β=0°	50% β=60°	30% β=90°
K	1,2	3,7	7,3
ΔL_{wA} , д $\overline{b}(A)$	2	5	7

устройства

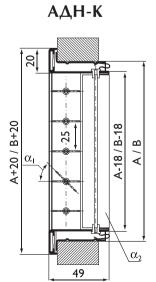
Решетки АМН-К, АДН-К, АМР-К, АДР-К

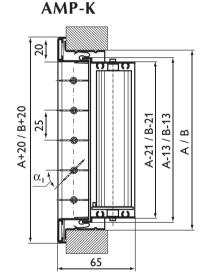

Решетки АМН-К, АМР-К, АДН-К, АДР-К предназначены для подачи и удаления воздуха системами вентиляции и кондиционирования в помещениях различного назначения.

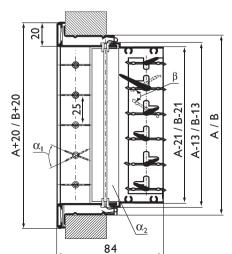

Решетки АМН-К и АМР-К снабжены одним, а АДН-К и АДР-К двумя рядами индивидуально регулируемых жалюзи, предназначенных для изменения направления и характеристик приточной струи. Жалюзи установлены в пластиковые втулки, которые облегчают их поворот при регулировании.


Решетки АМР-К и АДР-К дополнительно оснащены регулятором расхода воздуха. Регулирование расхода осуществляется вручную, без использования инструмента, при помощи специального флажкового механизма.

Минимальный размер решетки 100×100 мм, максимальный - 1200 мм по одной из сторон, с шагом 50 мм; возможно изготовление решеток с нестандартным шагом (см. Приложение 4 на стр. 670). При размере А (В) > 450 мм для обеспечения прочности конструкции в решетках устанавливается одна перемычка, при А (В) > 800 - две перемычки.


Решетки изготавливаются из алюминия и окрашиваются методом порошкового напыления в белый цвет (RAL 9016). При изготовлении на заказ возможна окраска решеток в любой цвет по каталогу RAL или текстурирование (см. Приложение 3 на стр. 669).





АДР-К

Данные для подбора решеток АМН-К, АМР-К, АДН-К, АДР-К при подаче или удалении воздуха ($\alpha_1=\alpha_2=0^\circ$)

			< 20 д _{10лн} < 1		L _w A≤20 дБ(А)				L	.wA = 25	дБ(А	7)		L _{wA} =	=35 д	Б(А)		L _{wA} =45 дБ(А)				
Размер А×В, мм	F ₀ , M ²	L ₀ , м ³ /ч	Далі бойно при V	сть, м	L ₀ , м ³ /ч	ΔР _{полн} , Па	Далі бойно при V		L ₀ , м ³ /ч	ΔР _{полн} , Па	. ' '	,	L ₀ , м ³ /ч	∆Р _{полн} , Па	бо	Дально йность ри V _x , <i>N</i>	, м	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- ость, м / _х , м/с	
			0,2	0,5			0,2	0,5			0,2	0,5			0,2	0,5	0,75			0,5	0,75	
200 × 100	0,014	30	2,1	0,8	120	4	8,3	3,3	180	9	13	5,0	250	17	17	6,9	4,6	380	38	11	7,0	
300×100	0,022	50	2,8	1,1	160	3	8,9	3,6	260	7	14	5,7	350	13	19	7,7	5,1	520	29	11	7,7	
400 × 100	0,030	65	3,1	1,2	200	2	9,6	3,8	350	7	17	6,7	460	13	22	8,8	5,9	700	29	13	8,9	
500 × 100	0,039	80	3,4	1,4	250	2	11	4,3	420	6	18	7,1	580	13	25	9,9	6,6	800	24	14	9,1	
600 × 100	0,047	100	3,9	1,5	280	2	11	4,3	450	5	17	7,0	680	12	26	11	7,1	900	21	14	9,3	
150×150	0,017	35	2,2	0,9	120	3	7,7	3,1	200	8	13	5,1	280	15	18	7,2	4,8	400	31	10	6,9	
300×150	0,036	75	3,3	1,3	240	2	10	4,2	380	6	17	6,6	550	13	24	9,6	6,4	850	30	15	10	
400 × 150	0,050	100	3,7	1,5	300	2	11	4,5	500	6	19	7,5	750	13	28	11	7,5	1000	23	15	10	
500 × 150	0,063	130	4,3	1,7	380	2	13	5,1	600	5	20	8,1	900	12	30	12	8,0	1400	28	19	12	
600 × 150	0,076	150	4,6	1,8	440	2	13	5,3	700	5	21	8,6	1000	10	30	12	8,1	1500	22	18	12	
700×150	0,089	170	4,8	1,9	520	2	15	5,8	800	5	22	8,9	1200	10	34	14	9,0	1800	23	20	14	
800×150	0,102	200	5,2	2,1	600	2	16	6,3	1000	5	26	10	1500	12	39	16	10	1900	19	20	13	
200×200	0,032	70	3,2	1,3	220	3	10	4,1	350	6	16	6,5	460	11	21	8,4	5,6	700	26	13	8,6	
300×200	0,050	100	3,7	1,5	300	2	11	4,5	500	6	19	7,5	750	12	28	11	7,4	1000	22	15	10	
400×200	0,069	130	4,1	1,7	400	2	13	5,1	650	5	20	8,2	900	10	29	12	7,7	1400	23	18	12	
500 × 200	0,087	160	4,5	1,8	480	2	14	5,4	800	5	23	9,2	1200	11	34	14	9,2	1700	22	19	13	
600 × 200	0,105	200	5,2	2,1	600	2	15	6,2	980	5	25	10	1500	12	39	16	10	2000	20	21	14	
700×200	0,123	230	5,5	2,2	640	2	15	6,1	1050	4	25	10	1600	9	38	15	10	2200	18	21	14	
800×200	0,141	270	6,0	2,4	760	2	17	6,8	1250	5	28	11	1800	9	40	16	11	2600	19	23	15	
1000×200	0,177	340	6,7	2,7	920	2	18	7,3	1500	4	30	12	2000	7	39	16	10	3000	16	24	16	
300×300	0,079	150	4,5	1,8	400	1	12	4,8	650	4	19	7,7	1000	9	29	12	7,8	1500	20	18	12	
400 × 300	0,107	200	5,1	2,0	600	2	15	,	1000	5	25	10	1400	10	36	14	9,7	1880	17	19	13	
500 × 300	0,135	250	5,7	2,3	750	2	17	6,8	1250	5	29	11	1800	10	41	16	11	2500	19	23	15	
600 × 300	0,163	300	6,2	2,5	850	2	18	7,0	1400	4	29	12	2000	8	41	16	11	2800	17	23	15	
700×300	0,191	350	6,7	2,7	980	1	19	7,5	1600	4	30	12	2200	7	42	17	11	3400	18	26	17	
800×300	0,219	400	7,1	2,9	1100	1	20	,	1800	4	32		2500	7	45	18	12	3800	17	27	18	
1000×300	0,275	500	8,0	3,2	1250	1	20	8,0	2000	3	31	13	3200	7	50	20	13	4000	12	25	17	

$$\Delta P_{\text{полн}}^{\text{АМР-K, АДР-K}} = K \times \Delta P_{\text{полн}}$$

$$L_{\text{wA}}^{\text{АМР-K, АДР-K}} = L_{\text{wA}} + \Delta L_{\text{wA}}$$

% открытия регулятора расхода	100% β=0°	50% β=60°	30% β=90°
K	1,2	3,7	7,3
ΔL _{wA} , дБ(A)	2	5	7

Данные для подбора решеток АМН-К, АМР-К при подаче воздуха ($\alpha_1 = 45^{\circ}$)

			≤20 дБ _{полн} ≤1	,		$L_{wA} = 25$	5 дБ(А)			L_{wA}	=35 дІ	5(A)		L _{wA} = 45 дБ(A)						
Размер А×В, мм	F ₀ ,	L ₀ , м³/ч	Дал бойно при \	сть, м	L ₀ , м ³ /ч	ΔР _{полн} , Па	бойно при \	ьно- сть, м / _х , м/с	L ₀ , м ³ /ч	ΔР _{полн} , Па	бо п	Дально- ойность, ри V _x , м	M	L ₀ , м ³ /ч	ΔР _{полн} , Па	бо п	Дально- риность, ри V _x , м	, м		
			0,2	0,5			0,2	0,5			0,2	0,5	0,75			0,2	0,5	0,75		
200 × 100	0,014	30	1,3	0,5	55	2	2,3	0,9	110	11	4,6	1,8	1,2	200	34	8,3	3,3	2,2		
300 × 100	0,022	40	1,3	0,5	80	2	2,7	1,1	155	8	5,2	2,1	1,4	280	27	9,4	3,7	2,5		
400 × 100	0,030	50	1,4	0,6	100	2	2,9	1,1	200	8	5,7	2,3	1,5	360	24	10	4,1	2,8		
500 × 100	0,039	60	1,5	0,6	115	2	2,9	1,2	240	7	6,1	2,4	1,6	430	21	11	4,4	2,9		
600 × 100	0,047	65	1,5	0,6	130	2	3,0	1,2	260	5	6,0	2,4	1,6	500	20	12	4,6	3,1		
150 × 150	0,017	30	1,2	0,5	60	2	2,3	0,9	120	9	4,6	1,8	1,2	215	28	8,3	3,3	2,2		
300 × 150	0,036	55	1,4	0,6	110	2	2,9	1,2	220	6	5,8	2,3	1,5	400	21	10	4,2	2,8		
400 × 150	0,050	70	1,6	0,6	140	2	3,1	1,3	280	5	6,3	2,5	1,7	510	18	11	4,6	3,0		
500 × 150	0,063	80	1,6	0,6	160	1	3,2	1,3	330	5	6,6	2,6	1,8	610	17	12	4,9	3,2		
600 × 150	0,076	90	1,6	0,7	180	1	3,3	1,3	370	4	6,7	2,7	1,8	700	15	13	5,1	3,4		
700 × 150	0,089	100	1,7	0,7	205	1	3,4	1,4	420	4	7,0	2,8	1,9	790	14	13	5,3	3,5		
800 × 150	0,102	110	1,7	0,7	225	1	3,5	1,4	470	4	7,4	2,9	2,0	890	14	14	5,6	3,7		
200 × 200	0,032	50	1,4	0,6	100	2	2,8	1,1	200	7	5,6	2,2	1,5	360	22	10	4,0	2,7		
300 × 200	0,050	70	1,6	0,6	135	2	3,0	1,2	280	5	6,2	2,5	1,7	510	18	11	4,5	3,0		
400 × 200	0,069	80	1,5	0,6	160	1	3,0	1,2	340	5	6,5	2,6	1,7	635	15	12	4,8	3,2		
500 × 200	0,087	100	1,7	0,7	205	1	3,5	1,4	420	4	7,1	2,8	1,9	780	14	13	5,3	3,5		
600 × 200	0,105	110	1,7	0,7	225	1	3,5	1,4	470	4	7,3	2,9	1,9	890	13	14	5,5	3,7		
700 × 200	0,123	130	1,9	0,7	260	1	3,7	1,5	540	3	7,7	3,1	2,1	1000	11	14	5,7	3,8		
800 × 200	0,141	145	1,9	0,8	290	1	3,9	1,5	600	3	8,0	3,2	2,1	1140	11	15	6,1	4,0		
1000 × 200	0,177	170	2,0	0,8	340	1	4,0	1,6	700	3	8,3	3,3	2,2	1350	10	16	6,4	4,3		
300 × 300	0,079	95	1,7	0,7	190	1	3,4	1,4	385	4	6,8	2,7	1,8	720	14	13	5,1	3,4		
400 × 300	0,107	110	1,7	0,7	225	1	3,4	1,4	470	3	7,2	2,9	1,9	890	12	14	5,4	3,6		
500 × 300	0,135	130	1,8	0,7	265	1	3,6	1,4	560	3	7,6	3,0	2,0	1070	11	15	5,8	3,9		
600 × 300	0,163	155	1,9	0,8	310	1	3,8	1,5	650	3	8,0	3,2	2,1	1250	11	15	6,2	4,1		
700 × 300	0,191	180	2,1	0,8	360	1	4,1	1,6	750	3	8,6	3,4	2,3	1420	10	16	6,5	4,3		
800 × 300	0,219	200	2,1	0,9	400	1	4,3	1,7	830	2	8,9	3,5	2,4	1600	9	17	6,8	4,6		
1000×300	0,275	230	2,2	0,9	460	1	4,4	1,8	980	2	9,3	3,7	2,5	1900	8	18	7,2	4,8		

$\Delta P_{\text{полн}}^{\text{ AMP-K}} = K \times \Delta P_{\text{полн}}$
$L_{wA}^{AMP-K} = L_{wA} + \Delta L_{wA}$

% открытия регулятора расхода	100% β=0°	50% β=60°	30% $\beta = 90^{\circ}$
K	1,0	1,8	2,5
ΔL _{wA} , дБ(A)	0	5	7

Данные для подбора решеток АДН-К, АДР-К при подаче воздуха ($\alpha_1=45^\circ,\ \alpha_2=0^\circ$)

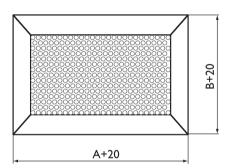
			≤20 дБ Р _{полн} ≤1	. ,,		$L_{wA} = 25$	дБ(A)			L _{wA} :	=35 дЕ	5(A)			L _{wA} :	=45 дЕ	5(A)	
Размер А×В, мм	F ₀ ,	L ₀ , м ³ /ч	бойно	ьно- сть, м / _x , м/с	L ₀ , м ³ /ч	ΔР _{полн} , Па	бойно	ьно- сть, м / _x , м/с	L ₀ , м ³ /ч	ΔР _{полн} , Па	бо	Дально- риность, ри V _x , м	М	L ₀ , м ³ /ч	ΔР _{полн} , Па	бо	Дально- риность, ри V _x , м	. м
			0,2	0,5			0,2	0,5			0,2	0,5	0,75			0,2	0,5	0,75
200 × 10	0 0,014	30	1,3	0,5	55	3	2,3	0,9	110	14	4,6	1,8	1,2	200	45	8,3	3,3	2,2
300×10	0 0,022	40	1,3	0,5	80	3	2,7	1,1	155	11	5,2	2,1	1,4	280	36	9,4	3,7	2,5
400 × 10	0,030	50	1,4	0,6	100	3	2,9	1,1	200	10	5,7	2,3	1,5	360	32	10	4,1	2,8
500 × 10	-,	60	1,5	0,6	115	2	2,9	1,2	240	9	6,1	2,4	1,6	430	28	11	4,4	2,9
600 × 10	,	65	1,5	0,6	130	2	3,0	1,2	260	7	6,0	2,4	1,6	500	26	12	4,6	3,1
150 × 15	,	30	1,2	0,5	60	3	2,3	0,9	120	12	4,6	1,8	1,2	215	37	8,3	3,3	2,2
300×15	-,	55	1,4	0,6	110	2	2,9	1,2	220	8	5,8	2,3	1,5	400	28	10	4,2	2,8
400 × 15	-,	70	1,6	0,6	140	2	3,1	1,3	280	7	6,3	2,5	1,7	510	24	11	4,6	3,0
500 × 15	0,063	80	1,6	0,6	160	1	3,2	1,3	330	6	6,6	2,6	1,8	610	22	12	4,9	3,2
600 × 15	-,	90	1,6	0,7	180	1	3,3	1,3	370	5	6,7	2,7	1,8	700	20	13	5,1	3,4
700 × 15	0,089	100	1,7	0,7	205	1	3,4	1,4	420	5	7,0	2,8	1,9	790	18	13	5,3	3,5
800 × 15	,	110	1,7	0,7	225	1	3,5	1,4	470	5	7,4	2,9	2,0	890	18	14	5,6	3,7
200×20	0 0,032	50	1,4	0,6	100	2	2,8	1,1	200	9	5,6	2,2	1,5	360	29	10	4,0	2,7
300×20	0,050	70	1,6	0,6	135	2	3,0	1,2	280	7	6,2	2,5	1,7	510	24	11	4,5	3,0
400×20	0,069	80	1,5	0,6	160	1	3,0	1,2	340	6	6,5	2,6	1,7	635	20	12	4,8	3,2
500×20	0 0,087	100	1,7	0,7	205	1	3,5	1,4	420	5	7,1	2,8	1,9	780	19	13	5,3	3,5
600×20	0 0,105	110	1,7	0,7	225	1	3,5	1,4	470	5	7,3	2,9	1,9	890	17	14	5,5	3,7
700×20	0 0,123	130	1,9	0,7	260	1	3,7	1,5	540	4	7,7	3,1	2,1	1000	15	14	5,7	3,8
800×20	0 0,141	145	1,9	0,8	290	1	3,9	1,5	600	4	8,0	3,2	2,1	1140	15	15	6,1	4,0
1000×20	-,	170	2,0	0,8	340	1	4,0	1,6	700	4	8,3	3,3	2,2	1350	13	16	6,4	4,3
300×30	-,	95	1,7	0,7	190	1	3,4	1,4	385	5	6,8	2,7	1,8	720	19	13	5,1	3,4
400 × 30	,	110	1,7	0,7	225	1	3,4	1,4	470	4	7,2	2,9	1,9	890	16	14	5,4	3,6
500×30	,	130	1,8	0,7	265	1	3,6	1,4	560	4	7,6	3,0	2,0	1070	15	15	5,8	3,9
600×30	,	155	1,9	0,8	310	1	3,8	1,5	650	4	8,0	3,2	2,1	1250	14	15	6,2	4,1
700×30	0 0,191	180	2,1	0,8	360	1	4,1	1,6	750	4	8,6	3,4	2,3	1420	13	16	6,5	4,3
800 × 30	0 0,219	200	2,1	0,9	400	1	4,3	1,7	830	3	8,9	3,5	2,4	1600	12	17	6,8	4,6
1000 × 30	0 0,275	230	2,2	0,9	460	1	4,4	1,8	980	3	9,3	3,7	2,5	1900	11	18	7,2	4,8

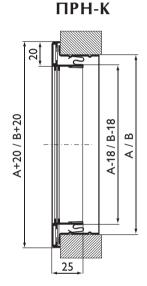
$\Delta P_{\text{полн}}^{\text{ AДP-K}} = K \times \Delta P_{\text{полн}}$	
$L_{wA}^{AJP-K} = L_{wA} + \Delta L_{wA}$	

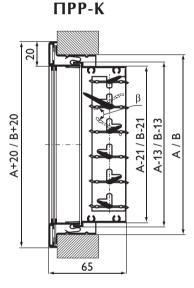
% открытия регулятора расхода	100% β=0°	50% β=60°	30% β=90°
K	1,0	1,8	2,5
ΔL _{wA} , дБ(A)	0	5	7

устройства

Перфорированные решетки ПРН-К, ПРР-К


Перфорированные решетки ПРН-К, ПРР-К предназначены для подачи и удаления воздуха системами вентиляции и кондиционирования в помещениях различного назначения. Кроме того, решетки могут быть установлены в отопительных каналах каминов, а также в виде декоративных панелей для приборов отопления.

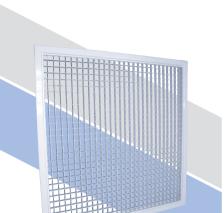

Решетки ПРН-К представляют собой раму прямоугольной формы с перфорированной панелью. Коэффициент живого сечения перфорации $K_{\text{ж.с.}} = 0,6$.


Решетки ПРР-К дополнительно оснащены регулятором расхода воздуха.

Минимальный размер решетки 100×100 мм, максимальный — 1200×300 мм, с шагом 50 мм; возможно изготовление решеток с нестандартным шагом (см. Приложение 4 на стр. 670).

Корпус решетки изготавливается из алюминия, перфорированная панель — из стали и окрашивается методом порошкового напыления в белый цвет (RAL 9016). При изготовлении на заказ возможна окраска решеток в любой цвет по каталогу RAL или текстурирование (см. Приложение 3 на стр. 669).

Данные для подбора решеток ПРН-К, ПРР-К при удалении воздуха


Размер	Е	L _{wA} = 2!	5 дБ(A)	L _{wA} = 3	5 дБ(A)	L _{wA} =45 дБ(А)			
А×В, мм	F ₀ , M ²	L ₀ , м³/ч	ΔР _{полн} , Па	L ₀ , м³/ч	ΔР _{полн} , Па	L ₀ , м ³ /ч	ΔР _{полн} , Па		
200 × 100	0,014	170	17	240	33	330	64		
300 × 100	0,022	250	15	340	28	500	60		
400 × 100	0,030	320	13	450	26	650	54		
500 × 100	0,039	380	11	540	24	760	47		
600 × 100	0,047	480	13	650	24	950	51		
150 × 150	0,017	190	15	260	29	370	58		
300 × 150	0,036	360	11	520	25	750	51		
400 × 150	0,049	500	12	700	24	1000	49		
500 × 150	0,062	600	11	900	25	1200	44		
600 × 150	0,076	800	13	1100	26	1400	42		
700 × 150	0,089	850	11	1300	26	1700	44		
800 × 150	0,102	1000	11	1500 26		1900	42		
200 imes 200	0,032	330	12	470	25	680	52		
300 imes 200	0,050	500	12	700	24	1000	47		
400 imes 200	0,069	830	18	1200	37	1550	62		
500 imes 200	0,087	840	11	1300	28	1700	47		
600 imes 200	0,105	1000	11	1500	25	1900	41		
700 imes 200	0,123	1200	11	1700	24	2200	39		
800×200	0,141	1300	11	1800	20	2300	33		
1000 × 200	0,177	1700	11	2200	19	3000	34		
300 imes 300	0,079	800	12	1200	29	1600	51		
400 imes 300	0,107	1000	11	1500	24	1900	39		
500 imes 300	0,139	1250	11	1750	20	2200	32		
600 imes 300	0,163	1500	11	2000	18	2600	30		
700 × 300	0,191	1800	11	2400	19	3000	30		
800 imes 300	0,219	2000	10	2600	17	3600	33		
1000 × 300	0,275	2400	9	3200	16	4300	30		

В решетках с регулятором расхода табличные значения $\Delta P_{\text{полн}}$ и L_{wA} корректируются:

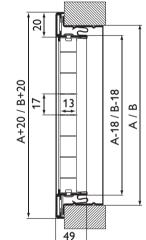
$\Delta P_{\text{полн}}^{\text{ПРР-K}} = K \times \Delta P_{\text{полн}}$
$L_{\text{wA}}^{\text{ПРР-K}} = L_{\text{wA}} + \Delta L_{\text{wA}}$

% открытия регулятора расхода	100% β=0°	50% β=60°	30% $\beta = 90^{\circ}$
K	1,2	1,8	2,5
ΔL _{wA} , дБ(A)	0	5	7

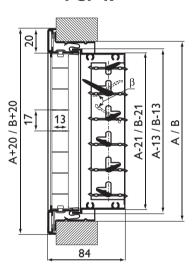
устройства

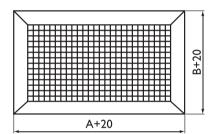
Сотовые решетки РСН-К, РСР-К

Сотовые решетки РСН-К и РСР-К предназначены для удаления воздуха системами вентиляции и кондиционирования в помещениях различного назначения.


Решетки РСН-К, РСР-К представляют собой раму прямоугольной формы с неподвижно установленной в ней объемной решеткой в виде квадратных "сот". Коэффициент живого сечения "сот" $K_{\text{ж.с.}} = 0.83$.

Решетки РСР-К дополнительно оснащены регулятором расхода воздуха.


Минимальный размер решетки 100×100 мм, максимальный — 1200×600 мм, с шагом 50 мм; возможно изготовление решеток с нестандартным шагом (см. Приложение 4 на стр. 670). При размере A (B) > 650 мм для обеспечения прочности конструкции в решетках устанавливается перемычка.


Решетки изготавливаются из алюминия и окрашиваются методом порошкового напыления в белый цвет (RAL 9016). При изготовлении на заказ возможна окраска решеток в любой цвет по каталогу RAL или текстурирование (см. Приложение 3 на стр. 669).

PCH-K

PCP-K

Данные для подбора решеток РСН-К, РСР-К при удалении воздуха

Размер	F ₀ ,	L _{wA} = 25	5 дБ(А)	L _{wA} = 3.	5 дБ(А)	L _{wA} = 45 дБ(А)			
A×B, MM	M ²	L ₀ , м³/ч	ΔР _{полн} , Па	L ₀ , м³/ч	ΔР _{полн} , Па	L ₀ , м³/ч	ΔР _{полн} , Па		
200 × 100	0,014	180	7	250	12	380	29		
300 × 100	0,022	260	6	350	10	520	22		
400 × 100	0,030	350	6	460	10	700	22		
500 × 100	0,039	420	5	580	10	800	18		
600 × 100	0,047	450	4	680	9	900	16		
150 × 150	0,017	200	6	280	11	400	24		
300 × 150	0,036	380	5	550	10	850	23		
400 × 150	0,049	500	4	750	10	1000	17		
500 × 150	0,062	600	4	900	9	1400	21		
600 × 150	0,076	700	4	1000	7	1500	16		
700 × 150	0,089	800	3	1200	8	1800	18		
800 × 150	0,102	1000	4	1500	9	1900	15		
200 imes 200	0,032	350	5	460	8	700	19		
300 imes 200	0,050	500	4	750	9	1000	16		
400 × 200	0,069	650	4	900	7	1400	18		
500 × 200	0,087	800	4	1200	8	1700	16		
600 × 200	0,105	980	4	1500	9	2000	15		
700 × 200	0,123	1050	3	1600	7	2200	14		
800 × 200	0,141	1250	3	1800	7	2600	14		
1000 × 200	0,177	1500	3	2000	5	3000	12		
300 × 300	0,079	650	3	1000	7	1500	15		
400 × 300	0,107	1000	4	1400	7	1880	13		
500 × 300	0,139	1250	4	1800	7	2500	15		
600 × 300	0,163	1400	3	2000	6	2800	12		
700 × 300	0,191	1600	3	2200	6	3400	14		
800 imes 300	0,219	1800	3	2500	6	3800	12		
1000 × 300	0,275	2000	2	3200	6	4000	9		

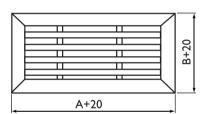
В решетках с регулятором расхода табличные значения $\Delta P_{\text{полн}}$ и L_{wA} корректируются:

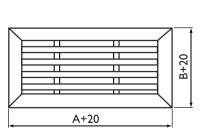
$\Delta P_{\text{полн}}^{\text{ PCP-K}} = K \times \Delta P_{по$	лн
$L_{wA}^{PCP-K} = L_{wA} + \Delta L_{w}$	·A

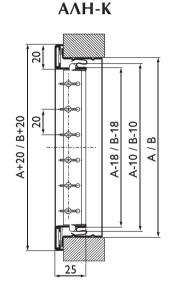
% открытия регулятора расхода	100% β=0°	50% β=60°	30% $\beta = 90^{\circ}$
K	1,4	5,8	11,3
ΔL _{wA} , дБ(A)	2	5	7

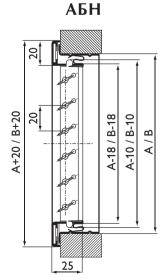
устройства

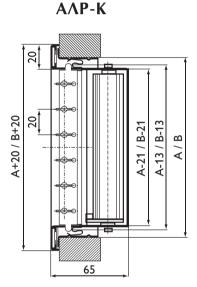
Решетки АЛН-К, АЛР-К, АБН, АБР

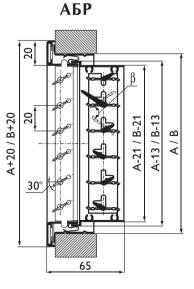

Решетки АЛН-К, АЛР-К, АБН, АБР предназначены для подачи и удаления воздуха системами вентиляции и кондиционирования в помещениях различного назначения.


Решетки АЛН-К, АЛР-К, АБН, АБР снабжены одним рядом неподвижных жалюзи. У решеток АЛН-К, АЛР-К жалюзи расположены под углом 0° к горизонтальной плоскости, у АБН, АБР — под углом 30° .


Решетки АЛР-К, АБР дополнительно оснащены регулятором расхода воздуха. Регулирование расхода осуществляется вручную, без использования инструмента, при помощи специального флажкового механизма.


Минимальный размер решетки 100×100 мм, максимальный — 1000×300 мм, с шагом 50 мм; возможно изготовление решеток с нестандартным шагом (см. Приложение 4 на стр. 670).


Решетки изготавливаются из алюминия и окрашиваются методом порошкового напыления в белый цвет (RAL 9016). При изготовлении на заказ возможна окраска решеток в любой цвет по каталогу RAL или текстурирование (см. Приложение 3 на стр. 669).



Данные для подбора решеток АЛН-К, АЛР-К при подаче или удалении воздуха

			<20 д _{полн} ≤1	` '	L _{wA} ≤20 дБ(А)				L _{wA} = 25 дБ(A)				L _{wA} = 35 дБ(А)					L _{wA} = 45 дБ(A)			
Размер А×В, мм	F ₀ ,	L ₀ , м ³ /ч	Дал бойно при V 0,2	сть, м	L ₀ , м³/ч	ΔР _{полн} , Па	1 1 1	ьно- сть, м / _х , м/с 0,5	L ₀ , м³/ч	ΔР _{полн} , Па	бойно	ьно- сть, м / _х , м/с 0,5	L ₀ , м ³ /ч	ΔР _{полн} , Па	бо	Дально йность ои V _x , м О,5	, м	L ₀ , м ³ /ч	ΔР _{полн} , Па	бойно	ыно- ость, м √х, м/с 0,75
200 × 100	0,014	30	2,1	0,8	120	4	8,3	3,3	180	9	13	5,0	250	17	17	6,9	4,6	380	38	11	7,0
300×100	0,022	50	2,8	1,1	160	3	8,9	3,6	260	7	14	5,7	350	13	19	7,7	5,1	520	29	11	7,7
400 × 100	0,030	65	3,1	1,2	200	2	9,6	3,8	350	7	17	6,7	460	13	22	8,8	5,9	700	29	13	8,9
500×100	0,039	80	3,4	1,4	250	2	11	4,3	420	6	18	7,1	580	13	25	9,9	6,6	800	24	14	9,1
600 × 100	0,047	100	3,9	1,5	280	2	11	4,3	450	5	17	7,0	680	12	26	11	7,1	900	21	14	9,3
150 × 150	0,017	35	2,2	0,9	120	3	7,7	3,1	200	8	13	5,1	280	15	18	7,2	4,8	400	31	10	6,9
300×150	0,036	75	3,3	1,3	240	2	10	4,2	380	6	17	6,6	550	13	24	9,6	6,4	850	30	15	10
400 × 150	0,050	100	3,7	1,5	300	2	11	4,5	500	6	19	7,5	750	13	28	11	7,5	1000	23	15	10
500 × 150	0,063	130	4,3	1,7	380	2	13	5,1	600	5	20	8,1	900	12	30	12	8,0	1400	28	19	12
600 × 150	0,076	150	4,6	1,8	440	2	13	5,3	700	5	21	8,6	1000	10	30	12	8,1	1500	22	18	12
700 × 150	0,089	170	4,8	1,9	520	2	15	5,8	800	5	22	8,9	1200	10	34	14	9,0	1800	23	20	14
800 × 150	0,102	200	5,2	2,1	600	2	16	6,3	1000	5	26	10	1500	12	39	16	10	1900	19	20	13
200 × 200	0,032	70	3,2	1,3	220	3	10	4,1	350	6	16	6,5	460	11	21	8,4	5,6	700	26	13	8,6
300 × 200	0,050	100	3,7	1,5	300	2	11	4,5	500	6	19	7,5	750	12	28	11	7,4	1000	22	15	10
400 × 200	0,069	130	4,1	1,7	400	2	13	5,1	650	5	20	8,2	900	10	29	12	7,7	1400	23	18	12
500 × 200	0,087	160	4,5	1,8	480	2	14	5,4	800	5	23	9,2	1200	11	34	14	9,2	1700	22	19	13
600 × 200	0,105	200	5,2	2,1	600	2	15	6,2	980	5	25	10	1500	12	39	16	10	2000	20	21	14
700 × 200	0,123	230	5,5	2,2	640	2	15	6,1	1050	4	25	10	1600	9	38	15	10	2200	18	21	14
800 × 200	0,141	270	6,0	2,4	760	2	17	6,8	1250	5	28	11	1800	9	40	16	11	2600	19	23	15
1000 × 200	0,177	340	6,7	2,7	920	2	18	7,3	1500	4	30	12	2000	7	39	16	10	3000	16	24	16
300 × 300	0,079	150	4,5	1,8	400	1	12	4,8	650	4	19	7,7	1000	9	29	12	7,8	1500	20	18	12
400 × 300	0,107	200	5,1	2,0	600	2	15	6,1	1000	5	25	10	1400	10	36	14	9,7	1880	17	19	13
500 × 300	0,135	250	5,7	2,3	750	2	17	6,8	1250	5	29	11	1800	10	41	16	11	2500	19	23	15
600 × 300	0,163	300	6,2	2,5	850	2	18	7,0	1400	4	29	12	2000	8	41	16	11	2800	17	23	15
700 × 300	0,191	350	6,7	2,7	980	1	19	7,5	1600	4	30	12	2200	7	42	17	11	3400	18	26	17
800 × 300	0,219	400	7,1	2,9	1100	1	20	7,8	1800	4	32	13	2500	7	45	18	12	3800	17	27	18
1000 × 300	0,275	500	8,0	3,2	1250	1	20	8,0	2000	3	31	13	3200	7	50	20	13	4000	12	25	17

$\Delta P_{\text{полн}}^{\text{АЛР-K}} = K \times \Delta P_{\text{полн}}$	
$L_{wA}^{AJIP-K} = L_{wA} + \Delta L_{wA}$	

% открытия регулятора расхода	100% β=0°	50% β=60°	30% β=90°
K	1,2	3,7	7,3
ΛL_{WA} , $\Lambda \overline{b}(A)$	2	5	7

Данные для подбора решеток АБН, АБР при подаче или удалении воздуха

			L _{wA} ≤20	дБ(A)	А), ΔРполн≤1 Па				L _{wA} = 25 дБ(A)				L _{wA} = 35 дБ(A)				L _{wA} ≤45 дБ(А)			
Размер А×В, мм	F ₀ ,	L ₀ , м³/ч	Далі бойно при V	сть, м	L ₀ , м ³ /ч	Дал бойно при V	сть, м	L ₀ , м ³ /ч	ΔР _{полн} , Па	Дал бойно при V	,	L ₀ , м ³ /ч	∆Р _{полн} , Па	1 1	ьно- сть, м / _x , м/с	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- ость, м √ _х , м/с	
			0,2	0,5		0,2	0,5			0,2	0,5			0,5	0,75			0,5	0,75	
200 × 100	0,014	30	2,1	0,8	60	4,2	1,7	190	16	13	5,3	280	35	7,8	5,2	400	71	11	7,4	
300 × 100	0,022	50	2,8	1,1	80	4,5	1,8	300	16	17	6,6	430	34	9,5	6,3	600	66	13	8,9	
400 × 100	0,030	65	3,1	1,2	100	4,8	1,9	350	12	17	6,7	550	30	10	7,0	800	64	15	10	
500 × 100	0,039	80	3,4	1,4	120	5,1	2,0	420	11	18	7,1	650	27	11	7,1	940	55	16	11	
600 × 100	0,047	100	3,9	1,5	150	5,8	2,3	520	12	20	8,0	770	25	12	8,0	1100	52	17	11	
150 × 150	0,017	35	2,2	0,9	60	3,8	1,5	220	16	14	5,6	320	34	8,3	5,5	500	81	13	8,5	
300×150	0,036	75	3,3	1,3	120	5,2	2,1	400	12	18	7,1	650	30	11	7,6	900	57	16	10	
400 × 150	0,050	100	3,7	1,5	150	5,6	2,2	550	12	21	8,3	800	24	12	8	1200	54	18	12	
500 × 150	0,063	130	4,3	1,7	180	6,0	2,4	650	10	22	8,7	1000	24	14	9	1300	40	17	12	
600 × 150	0,076	150	4,6	1,8	200	6,1	2,4	750	9	23	9,2	1100	20	14	9	1500	36	18	12	
700×150	0,089	170	4,8	1,9	240	6,7	2,7	750	9	23	9,3	1200	17	14	9	1700	34	19	13	
800 × 150	0,102	200	5,2	2,1	250	6,5	2,6	900	8	24	9,6	1200	13	13	8,4	2000	36	21	13	
200×200	0,032	70	3,2	1,3	100	4,6	1,9	400	14	19	7,3	650	38	12	8,1	900	71	17	11	
300×200	0,050	100	3,7	1,5	150	5,6	2,2	550	11	20	8,1	800	23	12	7,9	1200	52	18	12	
400 × 200	0,069	130	4,1	1,7	180	5,7	2,3	700	9	22	8,8	1000	20	13	8,6	1400	39	18	12	
500 × 200	0,087	160	4,5	1,8	220	6,2	2,5	830	9	24	9,5	1200	18	14	9,2	1800	40	20	14	
600 × 200	0,105	200	5,2	2,1	250	6,4	2,6	900	7	23	9,3	1400	16	14	9,6	2100	38	22	14	
700×200	0,123	230	5,5	2,2	270	6,4	2,6	1100	8	26	11	1700	18	16	11	2500	39	24	16	
800×200	0,141	270	6,0	2,4	300	6,7	2,8	1200	7	27	11	1900	17	17	11	2800	36	25	17	
300×300	0,079	150	4,5	1,8	200	6,0	2,6	750	9	22	9,1	1200	22	14	9,6	1700	43	20	13	
400 × 300	0,107	200	5,1	2,0	250	6,4	2,6	900	6	22	9,0	1200	12	12	8,1	2100	36	21	14	
500×300	0,135	250	5,7	2,3	290	6,6	2,6	1150	7	26	11	2000	20	18	12	2500	32	23	15	
600 × 300	0,163	300	6,2	2,5	320	6,6	3,1	1400	7	29	11	2200	17	18	12	3200	36	27	18	
700×300	0,191	350	6,7	2,7	400	7,6	3,6	1700	8	_	13	2500	16	19	13	3400	30	26	18	
800×300	0,219	400	7,1	2,9	500	8,9	3,1	1700	6	-	12	2700	14	19	13	3900	30	28	19	

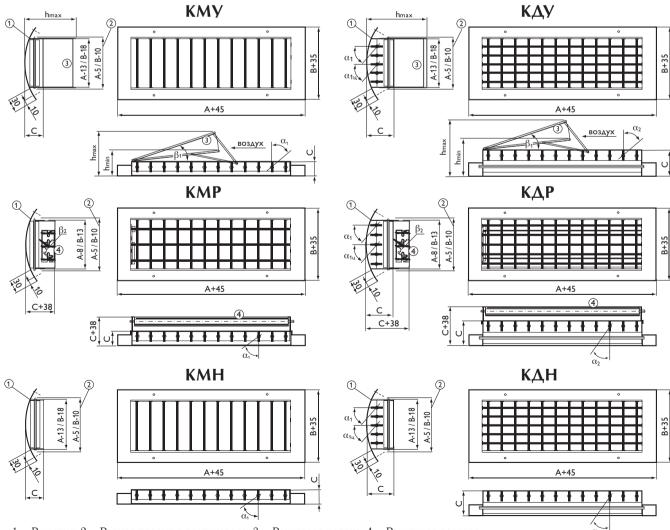
$\Delta P_{\text{полн}}^{\text{ABP}} = K \times \Delta P_{\text{полн}}$
$L_{\rm wA}^{\rm ABP} = L_{\rm wA} + \Delta L_{\rm wA}$

% открытия регулятора расхода	100% β=0°	50% $\beta = 60^{\circ}$	30% $\beta = 90^{\circ}$
K	1,2	3,7	7,3
ΔL _{wA} , дБ(A)	2	5	7

Решетки КМУ, КДУ, КМР, КДР, КМН, КДН для круглых воздуховодов

Решетки устанавливаются на круглых воздуховодах путем врезки и предназначены для подачи и удаления воздуха системами вентиляции и кондиционирования в помещениях различного назначения.

Однорядные КМУ, КМР, КМН и двухрядные КДН, КДУ, КДР решётки представляют собой стальной корпус с установленными в нем индивидуально регулируемыми алюминиевыми жалюзи для изменения направления и (или) характеристик приточной струи. Жалюзи установлены в пластиковые втулки, которые облегчают их поворот при регулировании. У однорядных решеток жалюзи расположены перпендикулярно оси воздуховода, у двухрядных наружный ряд — параллельно, внутренний — перпендикулярно. Наличие двух рядов жалюзи позволяет регулировать направление и дальнобойность приточной струи решетки в зависимости от требуемых параметров воздуха в рабочей зоне помещений и осуществлять посезонное регулирование системы воздухораспределения при переходе с


режима охлаждения на воздушное отопление, что расширяет область применения изделия.

КМУ, КДУ – решетки с регулятором потока используются для подачи воздуха при установке нескольких решеток на круглом воздуховоде и необходимости настройки сети.

КМР, КДР — решетки с регулятором расхода воздуха используются для удаления воздуха при установке нескольких решеток на круглом воздуховоде и необходимости настройки сети. Регулирование расхода осуществляется вручную, без использования инструмента, при помощи специального флажкового механизма.

КМН, КДН – решетки без регулятора используются для подачи и удаления воздуха при одиночной установке на круглом воздуховоде.

Решетки окрашиваются методом порошкового напыления в серый цвет (RAL 7047). При изготовлении на заказ возможна окраска решеток в любой цвет по каталогу RAL или текстурирование (см. Приложение 3 на стр. 669).

1 — Решетка; 2 — Размер проема в воздуховоде; 3 — Регулятор потока; 4 — Регулятор расхода.

Соответствие размеров решеток диаметрам воздуховодов и диапазон настройки регулятора потока решеток КМУ, КДУ

Высота	Длина	_	решетки, мм	Диаметр	Высота регулятора потока h, мм							
решётки	решётки	для	для	воздуховода	KA	ЛУ	K,	Ţλ				
В, мм	A, mm	однорядных решеток	двухрядных решеток	Ø D , мм	$ \begin{array}{c} \text{min} \\ \beta_1 = 10^{\circ} \end{array} $	$\max_{\beta_1 = 30^{\circ}}$	$min \\ \beta_1 = 10^{\circ}$	max β ₁ =30°				
100	200-300	40	60	160-200	69–73	106–118	89–93	126–138				
150	200-500	46	66	250-315	69-91	106–168	89–111	126–188				
200	200-600	50	70	315-355-400-500	69-100	106-193	89-120	126-213				
250	300-600	50	70	400-500-630	73-100	118–193	93-120	138–213				

Данные для подбора решеток КМУ при подаче воздуха ($\alpha_1 = 0^{\circ}$)

			L _{wA} <	<25 дБ(А)			L _{wA} = 35 дБ(A)						L _{wA} :	=45 д	Б(А)		$L_{wA} = 60$ дБ(A))
Размер А×В, мм	F ₀ , M ²	L ₀ , м ³ /ч	∆Р _{полн} , Па		обойно ри V _x , м		L ₀ , м ³ /ч	∆Р _{полн} , Па		обойно ри V _x , м		L ₀ , м ³ /ч	∆Р _{полн} , Па		обойно ри V _x , м		L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- ость, м √ _х , м/с
		M179	Ha	0,2	0,5	0,75	M1/9	Ha	0,2	0,5	0,75	M1/9	Ha	0,2	0,5	0,75	M1/4	1 Ia	0,5	0,75
200 × 100	0,014	130	16	8,7	3,5	2,3	240	54	16	6,4	4,3	350	116	23	9,4	6,2	500	236	13	8,9
300 × 100	0,022	180	12	9,6	3,8	2,6	300	34	16	6,4	4,3	500	96	27	11	7,1	700	187	15	10
200 × 150	0,023	180	11	9,4	3,8	2,5	300	32	16	6,3	4,2	500	88	26	10	7,0	700	172	15	9,7
300 × 150	0,036	250	9	10	4,2	2,8	360	19	15	6,0	4,0	690	68	29	12	7,7	1100	173	18	12
400 × 150	0,050	340	9	12	4,8	3,2	490	18	17	6,9	4,6	780	45	28	11	7,4	1250	116	18	12
500 × 150	0,063	420	8	13	5,3	3,5	600	17	19	7,6	5,0	900	38	28	11	7,6	1360	86	17	11
200 × 200	0,032	230	10	10	4,1	2,7	370	25	16	6,5	4,4	620	70	27	11	7,3	950	163	17	11
300 × 200	0,050	340	9	12	4,8	3,2	490	18	17	6,9	4,6	780	45	28	11	7,4	1250	116	18	12
400 × 200	0,069	450	8	14	5,4	3,6	650	16	20	7,8	5,2	930	34	28	11	7,5	1490	86	18	12
500 × 200	0,087	540	7	14	5,8	3,9	790	15	21	8,5	5,7	1140	32	31	12	8,2	1870	86	20	13
600 × 200	0,105	620	6	15	6,1	4,0	930	15	23	9,1	6,1	1350	31	33	13	8,8	2240	84	22	15
300 × 250	0,065	430	8	13	5,3	3,6	620	17	19	7,7	5,1	870	33	27	11	7,2	1400	86	17	12
400 × 250	0,088	550	7	15	5,9	3,9	800	15	21	8,5	5,7	1150	32	31	12	8,2	1890	85	20	13
500 × 250	0,111	650	6	15	6,2	4,1	970	14	23	9,2	6,1	1410	30	34	13	8,9	2370	84	23	15
600 × 250	0,134	750	6	16	6,5	4,3	1130	13	24	9,8	6,5	1660	28	36	14	9,6	2820	82	24	16

Данные для подбора решеток КДУ, КДН при подаче или удалении воздуха ($\alpha_1 = \alpha_2 = 0^\circ$)

			L_{wA}	< 25 дБ	(A)			L_{wA}	=35 дБ	(A)		L _{wA} = 45 дБ(A)					
Размер А×В, мм	F ₀ , M ²	L ₀ ,	$\Delta P_{\text{полн,}}$		нобойнос іри V _x , м/с		L ₀ ,	$\Delta P_{\text{полн,}}$		нобойнос три V _x , м/		L ₀ ,	$\Delta P_{\text{полн,}}$		нобойнос три V _x , м/		
		м ³ /ч	Па	0,2	0,5	0,75	м ³ /ч	Па	0,2	0,5	0,75	м ³ /ч	Па	0,2	0,5	0,75	
200 × 100	0,014	130	16	11	4,3	2,8	215	44	18	7,1	4,7	330	103	27	11	7,2	
300 × 100	0,022	170	11	11	4,5	3,0	285	31	19	7,5	5,0	445	76	29	12	7,8	
200 × 150	0,023	170	10	11	4,4	2,9	285	28	18	7,3	4,9	445	69	29	11	7,6	
300 × 150	0,036	230	8	12	4,7	3,1	280	11	14	5,7	3,8	600	51	31	12	8,2	
400 × 150	0,050	275	6	12	4,8	3,2	460	16	20	8,0	5,3	730	39	32	13	8,5	
500 × 150	0,063	320	5	12	5,0	3,3	540	14	21	8,4	5,6	860	35	33	13	8,9	
200 × 200	0,032	210	8	11	4,6	3,0	350	22	19	7,6	5,1	550	55	30	12	8,0	
300 × 200	0,050	275	6	12	4,8	3,2	460	16	20	8,0	5,3	730	39	32	13	8,5	
400 × 200	0,069	330	4	12	4,9	3,3	560	12	21	8,3	5,5	900	32	33	13	8,9	
500 × 200	0,087	380	4	13	5,0	3,3	660	11	22	8,7	5,8	1050	27	35	14	9,2	
600 × 200	0,105	430	3	13	5,2	3,4	740	9	22	8,9	5,9	1200	24	36	14	9,6	
300 × 250	0,065	320	4	12	4,9	3,3	540	13	21	8,2	5,5	860	32	33	13	8,7	
400 × 250	0,088	380	3	12	5,0	3,3	660	10	22	8,7	5,8	1050	26	34	14	9,2	
500 × 250	0,111	450	3	13	5,3	3,5	770	9	22	9,0	6,0	1230	23	36	14	9,6	
600 × 250	0,134	500	3	13	5,3	3,5	870	8	23	9,2	6,2	1400	20	37	15	9,9	

Данные для подбора решеток КДУ, КДН при подаче воздуха (α_1 = 45° веерно от центра, $\alpha_{1\mu}$ = 0°, α_2 = 0°)

		L _{wA} < 25 дБ(A) Бо, Дальнобойность, л						L_{wA}	=35 дБ	(A)			L_{wA}	=45 дБ	(A)	
Размер А ×В, мм	F ₀ , M ²	L ₀ ,	$\Delta P_{\text{полн,}}$		нобойнос іри V _x , м/		L ₀ ,	$\Delta P_{\text{полн,}}$		нобойнос три V _x , м/с		L ₀ ,	$\Delta P_{\text{полн,}}$		нобойнос три V _x , м/	
		м ³ /ч	Па	0,2	0,5	0,75	м ³ /ч	Па	0,2	0,5	0,75	м ³ /ч	Па	0,2	0,5	0,75
200 × 100	0,014	120	14	4	1,4	0,9	200	40	6	2,3	1,6	290	83	9	3,4	2,3
300 × 100	0,022	160	10	4	1,5	1,0	250	25	6	2,3	1,6	380	58	9	3,6	2,4
200 × 150	0,023	160	9	4	1,5	1,0	250	23	6	2,3	1,5	380	53	9	3,5	2,3
300 × 150	0,036	200	6	4	1,5	1,0	320	15	6	2,3	1,6	500	38	9	3,7	2,4
400 × 150	0,050	235	4	4	1,5	1,0	385	12	6	2,4	1,6	600	28	9	3,7	2,5
500 × 150	0,063	265	3	4	1,5	1,0	440	9	6	2,4	1,6	700	24	10	3,9	2,6
200 × 200	0,032	185	6	4	1,4	1,0	300	17	6	2,3	1,6	460	40	9	3,6	2,4
300 × 200	0,050	235	4	4	1,5	1,0	385	12	6	2,4	1,6	600	28	9	3,7	2,5
400 × 200	0,069	275	3	4	1,5	1,0	460	9	6	2,4	1,6	730	22	10	3,9	2,6
500 × 200	0,087	310	2	4	1,5	1,0	530	7	6	2,5	1,7	840	18	10	4,0	2,6
600 × 200	0,105	345	2	4	1,5	1,0	590	6	6	2,5	1,7	940	16	10	4,0	2,7
300 × 250	0,065	265	3	4	1,4	1,0	440	9	6	2,4	1,6	700	23	10	3,8	2,5
400 × 250	0,088	310	2	4	1,5	1,0	530	7	6	2,5	1,7	840	18	10	3,9	2,6
500 × 250	0,111	350	2	4	1,5	1,0	600	6	6	2,5	1,7	970	15	10	4,0	2,7
600 × 250	0,134	390	2	4	1,5	1,0	670	5	6	2,5	1,7	1100	13	10	4,2	2,8

Данные для подбора решеток КДУ, КДН при подаче воздуха (α_1 = 45 $^\circ$ в одну сторону, α_2 = 0 $^\circ$)

			L _{wA} < 25 дБ(A)					L_{wA}	= 35 дБ	(A)			L_{wA}	= 45 дБ	(A)	
Размер А ×В, мм	F ₀ , M ²	L ₀ ,	$\Delta P_{\text{полн,}}$		нобойнос іри V _x , м/		L ₀ ,	$\Delta P_{\text{полн,}}$		нобойнос три V _x , м/с		L ₀ ,	$\Delta P_{\text{полн,}}$		нобойнос три V _x , м/	
		м ³ /ч	Па	0,2	0,5	0,75	м ³ /ч	Па	0,2	0,5	0,75	м ³ /ч	Па	0,2	0,5	0,75
200 × 100	0,014	110	14	9	3,6	2,4	180	38	15	5,9	3,9	285	96	23	9	6,2
300 × 100	0,022	150	11	10	3,9	2,6	245	29	16	6,4	4,3	380	69	25	10	6,6
200 × 150	0,023	150	10	10	3,8	2,6	245	26	16	6,3	4,2	380	63	24	10	6,5
300 × 150	0,036	190	6	10	3,9	2,6	320	18	16	6,6	4,4	510	46	26	10	7,0
400 × 150	0,050	230	5	10	4,0	2,7	400	15	17	7,0	4,6	620	36	27	11	7,2
500 × 150	0,063	270	4	10	4,2	2,8	460	12	18	7,1	4,8	720	30	28	11	7,4
200 × 200	0,032	180	7	10	3,9	2,6	300	20	16	6,5	4,3	460	48	25	10	6,7
300×200	0,050	230	5	10	4,0	2,7	400	15	17	7,0	4,6	620	36	27	11	7,2
400 × 200	0,069	280	4	10	4,1	2,8	480	11	18	7,1	4,7	760	28	28	11	7,5
500 × 200	0,087	320	3	11	4,2	2,8	550	9	18	7,3	4,8	890	24	29	12	7,8
600 × 200	0,105	360	3	11	4,3	2,9	620	8	19	7,4	5,0	1000	21	30	12	8,0
300 × 250	0,065	270	4	10	4,1	2,7	460	12	18	7,0	4,7	720	28	27	11	7,3
400 × 250	0,088	320	3	10	4,2	2,8	550	9	18	7,2	4,8	890	24	29	12	7,8
500 × 250	0,111	360	2	11	4,2	2,8	640	8	19	7,5	5,0	1040	20	30	12	8,1
600 × 250	0,134	400	2	11	4,2	2,8	720	7	19	7,6	5,1	1180	18	31	13	8,4

Данные для подбора решеток КМР, КДР при удалении воздуха ($\alpha_1 = \alpha_2 = 0^\circ$)

					β2=	=0°						$\beta_2 =$	60°					$\beta_2 =$	90°		
Размер	F ₀ ,	L _A = 2!	5дБ(A)	$L_A = 35$	БДБ(А)	$L_A = 45$	БДБ(А)	$L_A = 60$	ОдБ(А)	$L_A = 30$)дБ(А)	$L_A = 40$)дБ(А)	$L_A = 50$	ДБ(A)	$L_A = 35$	5дБ(А)	$L_A = 45$	дБ(А)	$L_A = 55$	дБ(А)
$A\times B$, MM	M ²	L ₀ , м ³ /ч	∆Р _{полн} , Па	L ₀ , м ³ /ч	∆Р _{полн} , Па	L ₀ , м ³ /ч	∆Р _{полн} , Па	L ₀ , м ³ /ч	∆Рполн,	L ₀ , м ³ /ч	∆Рполн,	L ₀ , м ³ /ч	∆Р _{полн} , Па	L ₀ , м ³ /ч	∆Р _{полн} , Па	L ₀ , м ³ /ч	∆Рполн,	L ₀ , м ³ /ч	∆Рполн,	L ₀ , м ³ /ч	∆Р _{полн} , Па
200 × 100	0,014	M ³ / 4	8	M ² / 4 220	27	350	69	M -/ 4 550	Па 171	M ² / 4	Па 26	M ³ / 4 220	86	M ² / 4	217	M ² / 4	Па 51	M ² / 4	Па 171	M ² / 4 280	278
300 × 100	0,022	180	7	290	19	460	49	830	158	180	23	290	60	460	152	180	46	290	121	450	291
200 × 150	0,023	190	8	310	20	480	48	870	159	190	24	310	63	480	151	190	47	310	126	460	278
300 × 150	0,036	290	7	470	19	740	47	1340	154	290	23	470	59	740	147	290	45	470	118	740	293
400 × 150	0,050	400	7	640	18	1020	46	1850	152	400	22	640	57	1020	145	400	44	640	114	1020	289
500 × 150	0,063	490	7	800	18	1250	44	2330	152	490	21	800	56	1250	137	490	42	800	112	1250	273
200 × 200	0,032	260	7	420	19	660	47	1190	154	260	23	420	60	660	148	260	46	420	120	660	295
300 × 200	0,050	480	10	770	26	1160	60	1900	160	480	32	770	82	1160	187	480	64	770	165	950	251
400 × 200	0,069	540	7	870	18	1360	43	2550	152	540	21	870	55	1360	135	540	43	870	110	1360	270
500 × 200	0,087	660	6	1070	17	1700	42	3200	150	660	20	1070	53	1700	133	660	40	1070	105	1700	265
600 × 200	0,105	790	6	1280	17	2030	42	3880	152	790	20	1280	52	2030	130	790	39	1280	103	2030	260
300 × 250	0,065	510	7	820	18	1290	44	2400	151	510	21	820	55	1290	137	510	43	820	111	1290	274
400 × 250	0,088	670	6	1090	17	1720	42	3230	150	670	20	1090	53	1720	133	670	40	1090	107	1720	265
500 × 250	0,111	830	6	1340	16	2140	41	4090	151	830	19	1340	51	2140	129	830	39	1340	101	2140	258
600 × 250	0,134	990	6	1600	16	2550	40	4900	149	990	19	1600	50	2550	126	990	38	1600	99	2550	251

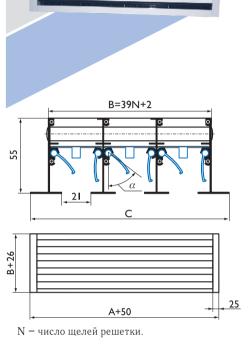
Угол открытия регулятора расхода	$\beta_2 = 0^{\circ}$	$\beta_2 = 60^{\circ}$	$\beta_2 = 90^{\circ}$
% открытия регулятора расхода	100%	50%	30%

Данные для подбора решеток КМН при подаче или удалении воздуха ($\alpha_1 = 0^{\circ}$)

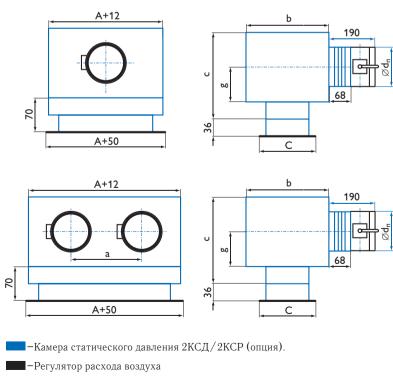
		L _{wA} < 25 дЬ(A)				L _{wA} = 35 дЬ(A)				L _{wA} = 45 дb(A)				$L_{WA} = 60 \text{ дb}(A)$						
Размер А×В, мм	F ₀ ,	L ₀ , м ³ /ч	∆Р _{полн} , Па		обойно ри V _x , м		L ₀ ,	∆Р _{полн} , Па	Дальн п	обойно ри V _x , м		L ₀ , м ³ /ч	∆Р _{полн} , Па		обойно ри V _x , м		L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- сть, м / _х , м/с
		WI/T	Ha	0,2	0,5	0,75	Wt / H	Ha	0,2	0,5	0,75	/VI / T	Ha	0,2	0,5	0,75	Wt / H	Πa	0,5	0,75
200 × 100	0,014	130	8	6,9	2,7	1,8	250	31	13	5,3	3,5	350	61	18	7,4	4,9	600	179	13	8,5
300 × 100	0,022	180	7	7,6	3,0	2,0	320	21	13	5,4	3,6	550	61	23	9,3	6,2	830	138	14	9,3
200 × 150	0,023	190	7	7,8	3,1	2,1	340	21	14	5,6	3,7	570	60	23	9,4	6,3	870	139	14	9,6
300 × 150	0,036	290	6	9,6	3,8	2,5	470	17	15	6,2	4,1	740	41	24	9,8	6,5	1340	135	18	12
400 × 150	0,050	400	6	11	4,5	3,0	640	16	18	7,2	4,8	1020	40	29	11	7,6	1850	133	21	14
500 × 150	0,063	490	6	12	4,9	3,3	800	16	20	8,0	5,3	1250	38	31	12	8,3	2330	133	23	15
200 × 200	0,032	260	6	9	3,6	2,4	420	17	15	5,9	3,9	660	41	23	9	6,1	1190	134	17	11
300 × 200	0,050	480	9	13	5,4	3,6	770	23	22	8,6	5,7	1160	52	32	13	8,6	1900	140	21	14
400 × 200	0,069	540	6	13	5,1	3,4	870	15	21	8,3	5,5	1360	38	32	13	8,6	2550	133	24	16
500 × 200	0,087	660	6	14	5,6	3,7	1070	15	23	9,1	6,0	1700	37	36	14	9,6	3200	132	27	18
600 × 200	0,105	790	6	15	6,1	4,1	1280	14	25	9,9	6,6	2030	36	39	16	10	3880	133	30	20
300 × 250	0,065	510	6	13	5,0	3,3	820	15	20	8,0	5,4	1290	38	32	13	8,4	2400	133	24	16
400 × 250	0,088	670	6	14	5,6	3,8	1090	15	23	9,2	6,1	1720	37	36	14	9,7	3230	131	27	18
500 × 250	0,111	830	5	16	6,2	4,2	1340	14	25	10	6,7	2140	36	40	16	11	4090	132	31	20
600 × 250	0,134	990	5	17	6,8	4,5	1600	14	27	11	7,3	2550	35	44	17	12	4900	130	33	22

Щелевые решетки АРС, АЛС, АВС

Приточные щелевые решетки APC, AЛС предназначены для подачи воздуха в помещения различного назначения системами вентиляции и кондиционирования, в том числе с переменным расходом воздуха. Решетки APC обеспечивают устойчивость струи приточного воздуха в диапазоне изменения объемных расходов от 100% до 25%, в том числе в режиме охлаждения.


Вытяжные решетки АВС предназначены для удаления воздуха из поме-

Щелевые решетки представляют собой конструкцию из алюминиевого профиля с числом щелей от 1 до 6. В каждой щели решеток АРС установлены две перфорированные заслонки, выполняющие роль рассекателя потока и регулятора расхода воздуха, а также две направляющие жалюзи, при повороте которых на угол от 0° до 45° изменяется направление приточного потока от вертикального до горизонтального. Решетки АЛС поставляются без поворотных жалюзи, в этом случае направление приточного потока не регулируется. Решетки АВС поставляются без поворотных жалюзи и перфорированных заслонок.


Типоразмеры решеток: А (длина) от 300 мм до 2000 мм; В (высота) от 41 мм (1 щель) до 236 мм (6 щелей), шаг 39 мм. Коэффициент живого сечения у решеток АРС, АЛС $K_{\text{ж.с.}} = 0,25$; а у АВС $K_{\text{ж.с.}} = 0,60$. Возможно изготовление сложных Т-образных и угловых решеток.

Приточные решетки APC, AЛС рекомендуется использовать с камерами статического давления 2КСД, а вытяжные решетки ABC – с камерами 2КСР, оснащенными регулятором расхода воздуха.

Решетки изготавливаются из алюминия и окрашиваются методом порошкового напыления в белый цвет (RAL 9016). При изготовлении решетки на заказ возможна окраска в любой цвет по каталогу RAL или текстурирование корпуса (см. Приложение 3 на стр. 669). Поворотные жалюзи анодированы в черный цвет.

Характеристики решеток АРС, АЛС, АВС с камерами статического давления 2КСД/2КСР

Число щелей	Длина решетки А, мм	С,	Ød⊓, MM	Кол-во пат- рубков, шт	а, мм	b, мм	C, MM	g, MM
	500		159	1	256	142	236	100
1	1000	67	159	1	506	142	236	100
٠,	1500	07	159	2	756	142	236	100
	2000		159	2	1006	142	236	100
	500		199	1	256	182	286	125
2	1000	106	199	1	506	182	286	125
2	1500	106	199	2	756	182	286	125
	2000		199	2	1006	182	286	125
	500		199	1	256	222	296	130
3	1000	145	199	1	506	222	296	130
3	1500		199	2	756	222	296	130
	2000		199	2	1006	222	296	130
	500		249	1	256	272	356	160
4	1000	184	249	1	506	272	356	160
4	1500	104	249	2	756	272	356	160
	2000		249	2	1006	272	356	160
	500		249	1	256	312	366	165
_	1000	222	249	1	506	312	366	165
5	1500	223	249	2	756	312	366	165
	2000		249	2	1006	312	366	165
	500		314	1	256	352	411	200
6	1000	264	314	1	506	352	411	200
6	1500	204	314	2	756	352	411	200
	2000		314	2	1006	352	411	200

Данные для подбора щелевых решеток АРС, АЛС длиной 1 м при подаче воздуха с камерами статического давления 2КСД

			$L_{wA} < 20$	дБ(A))		$L_{wA} = 25$	дБ(A))		$L_{wA} = 35$	дБ(A)			L _{wA} :	=45 дІ	Б(А)	
Число щелей	F ₀ , M ²		∆Р _{полн} , Па		ьно- сть, м / _x , м/с	L ₀ , м ³ /ч	ΔР _{полн} , Па	бойно	ьно- ость, м / _x , м/с	L ₀ , м ³ /ч	∆Р _{полн} , Па	Далі бойно при V	сть, м	L ₀ , м ³ /ч	∆Р _{полн} , Па	бо	Дально ойность, ри V _x , м	, м
		Wt / -1	· · · ·	0,2	0,5	WL / -1	Ha	0,2	0,5	Wt / -1		0,2	0,5	/VI / -I	Ha	0,2	0,5	0,75
	Вертикальная свободная струя (АРС при $lpha$ = 0°, АЛС)																	
1	0,033	90	7	0,6	0,2	120	12	0,7	0,3	160	21	1,0	0,4	250	50	1,5	0,6	0,4
2	0,072	140	4	0,8	0,3	200	8	1,1	0,5	300	19	1,7	0,7	450	42	2,6	1,0	0,7
3	0,110	180	3	1,0	0,4	280	8	1,6	0,7	420	18	2,5	1,0	600	37	3,5	1,4	0,9
4	0,150	220	3	1,3	0,5	370	9	2,1	0,9	540	19	3,1	1,2	800	41	4,6	1,8	1,2
5	0,189	250	3	1,4	0,6	500	11	2,9	1,1	650	19	3,8	1,5	1000	44	5,8	2,3	1,5
6	0,227	270	2	1,6	0,6	530	9	3,1	1,2	750	19	4,4	1,8	1200	48	7,0	2,8	1,9
	Горизонтальная настилающаяся струя (АРС при $lpha = 45^{\circ}$)																	
1	0,033	60	4	0,5	0,2	85	7	0,7	0,3	130	17	1,1	0,4	180	33	1,5	0,6	0,4
2	0,072	120	4	1,0	0,4	150	6	1,2	0,5	220	13	1,8	0,7	320	27	2,6	1,1	0,7
3	0,110	150	3	1,3	0,5	220	7	1,9	0,7	300	12	2,5	1,0	460	28	3,8	1,5	1,0
4	0,150	180	3	1,4	0,6	280	6	2,2	0,9	400	13	3,2	1,3	570	27	4,5	1,8	1,2
5	0,189	220	3	1,7	0,7	340	7	2,7	1,1	500	14	4,0	1,6	700	29	5,6	2,2	1,5
6	0,227	250	3	2,1	0,8	400	7	3,3	1,3	580	15	4,7	1,9	820	30	6,7	2,7	1,8

Для решеток $A \neq 1$ м табличные значения L_0 корректируются пропорционально их длине. Значения $\Delta P_{\text{полн}}$ и дальнобойности струи соответствуют табличным при сохранении удельного расхода.

Данные для подбора щелевых решеток ABC длиной 1 м при удалении воздуха с камерами статического давления 2КСД и 2КСР

Число	E2	L _{wA} = 25	5 дБ(A)	$L_{wA} = 35$	5 дБ(A)	L _{wA} = 45 дБ(А)						
щелей	F ₀ , м ²	L ₀ , м ³ /ч	$\Delta P_{\scriptscriptstyle{ПОЛН}}$, Па	L ₀ , м ³ /ч	$\Delta P_{\text{полн}}$, Па	L ₀ , м ³ /ч	$\Delta P_{\text{полн}}$, Па					
	ABC											
1	0,033	200	6	300	14	500	38					
2	0,072	350	5	600	14	900	31					
3	0,110	420	3	800	12	1300	33					
4	0,150	600	4	1100	14	1600	30					
5	0,189	800	5	1400	16	2000	33					
6	0,227	900	5	1600	16	2200	30					

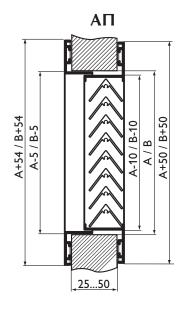
Для решеток $A \neq 1$ м табличные значения L_0 корректируются пропорционально их длине. Значения $\Delta P_{\text{полн}}$ соответствуют табличным при сохранении удельного расхода.

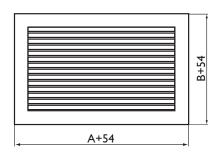
В камерах статического давления с регулятором расхода (2КСР) табличные значения $\Delta P_{\text{полн}}$ корректируются:

$$\Delta P_{\text{полн}}^{2\text{KCP}} = K \times \Delta P_{\text{полн}}$$

% открытия	100%	70%	50%
регулятора расхода	β=0°	β=45°	β=60°
K	1,3	3,5	9,0

Переточные решетки АП


Переточные решетки $\Lambda\Pi$ предназначены для перераспределения воздуха между помещениями.


Решетки состоят из двух прямоугольных рам — наружной и внутренней. Во внутренней раме неподвижно закреплены V-образные горизонтальные жалюзи, препятствующие обзору через решетку. Наружная рама устанавливается в дверной или стеновой проем и закрепляется самонарезающими винтами. Внутренняя рама устанавливается с противоположной стороны двери или стены. Размеры рам позволяют устанавливать решетки на дверях или стенах толщиной от 25 до 50 мм.

Минимальный размер решетки 100×100 мм, максимальный — 1000 мм по одной из сторон, с шагом 50 мм.

Решетки изготавливаются из алюминия и окрашиваются методом порошкового напыления в белый цвет (RAL 9016). При изготовлении на заказ возможна окраска решеток в любой цвет по каталогу RAL или текстурирование (см. Приложение 3 на стр. 669).

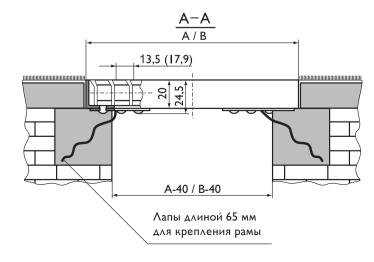
Данные для подбора решеток АП

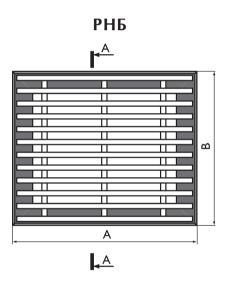
					Скорос	сть в живом	сечении V	к.с., м/с						
_	_	_	0,2	0,4	0,6	0,8	1,0	1,5	2,0	2,5				
Размер А×В, мм	F ₀ , M ²	F _{ж.c.} ,	Потери полного давления $\Delta P_{\scriptscriptstyle{ПОЛН}}$, Па											
A D, WIN	141		0,1	0,3	0,7	1,3	2,0	4,0	8,0	12,0				
				Расход воздуха L ₀ , м ³ /ч										
300 × 150	0,039	0,021	15	30	45	60	80	110	150	190				
300 imes 200	0,054	0,029	21	42	63	80	100	160	210	260				
300 imes 250	0,068	0,036	26	52	78	100	130	190	260	320				
350 × 150	0,046	0,025	18	36	54	70	90	140	180	230				
350 imes 200	0,063	0,034	24	49	73	100	120	180	240	310				
400 × 150	0,053	0,029	21	42	63	80	100	160	210	260				
400 × 200	0,073	0,040	29	58	86	120	140	220	290	360				
500 × 150	0,067	0,037	27	53	80	110	130	200	270	330				
500 × 200	0,091	0,050	36	72	110	140	180	270	360	450				
500 imes 250	0,116	0,064	46	92	140	180	230	350	460	580				
600 imes 200	0,110	0,061	44	88	130	180	220	330	440	550				
600 × 250	0,139	0,078	56	110	170	220	280	420	560	700				

Напольные решетки РНБ. РНР

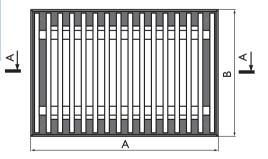
Напольные блочные решетки РНБ и рулонные решетки РНР предназначены для подачи и удаления воздуха системами вентиляции и кондиционирования в помещениях, оборудованных фальшполами, а также для систем воздушного отопления.

Напольные решетки состоят из прочной алюминиевой рамы и съемного блока жалюзи. Рама закрепляется в строительной конструкции пола с помощью специальных лап, которые установлены на раме. В решетке РНБ жалюзи жестко стянуты в блок и имеют два вида профиля — двутавровый или угловой. В решетке РНР блок жалюзи в продольном направлении гибкий, что позволяет сворачивать его в рулон для облегчения доступа к элементам системы вентиляции, кондиционирования и воздушного отопления. Жалюзи у решеток РНР имеют только двутавровый профиль. Шаг установки жалюзи в решетках РНБ и РНР с двутавровым профилем — 12,5 мм или 16,9 мм, с угловым — 13,5 мм или 17,9 мм.


Минимальный размер решетки РНБ -100×50 мм, РНР -200×100 мм, максимальный размер РНБ -2000×400 мм, РНР -3000×400 мм с шагом 50 мм для РНБ и 100 мм по стороне A, 50 мм по стороне B для РНР.

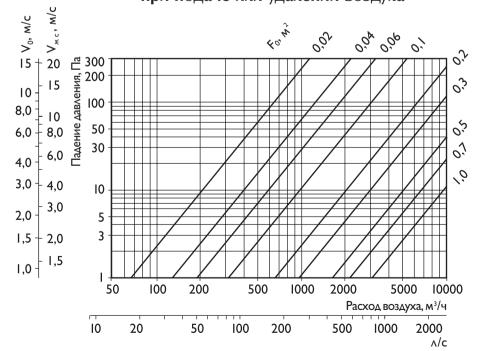

Напольные решетки изготавливаются из алюминия и имеют стандартное покрытие — бесцветное анодирование (A1 — при заказе не указывается). При изготовлении на заказ возможна окраска решеток в любой цвет по каталогу RAL или анодирование (A2 — под «бронзу», A4 — под «золото»).

Решетки РНБ, РНР с двутавровым профилем



Решетки РНБ с угловым профилем

РНР



Характеристики решеток РНБ, РНР

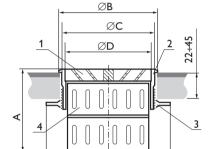
		РНБ1 (12,5)	РНБ2 (16,9)	РНБЗ (13,5)	РНБ4 (17,9)	PHP1 (12,5)	PHP2 (16,9)
Размер А×В, мм	F ₀ , M ²	с двутавровь	ім профилем	с угловым	профилем	с двутавровь	ім профилем
A^D, MM	M			Вес	, кг		
500 × 100	0,028	1,0	0,8	1,3	0,9	1,0	0,8
500 imes 200	0,074	1,7	1,4	1,8	1,5	1,6	1,3
500 imes 300	0,120	2,4	2,0	2,7	2,2	2,3	1,9
500 imes 400	0,166	3,3	2,6	3,6	2,8	2,8	2,3
1000 × 100	0,058	1,8	1,5	2,1	1,7	1,8	1,6
1000 imes 200	0,154	3,2	2,6	3,5	2,9	3,0	2,5
1000 imes 300	0,250	4,6	3,8	5,1	4,2	4,3	3,4
1000 × 400	0,346	6,5	4,9	7,2	5,4	5,4	4,2
1500 × 100	0,088	2,6	2,2	2,8	2,4	2,6	2,3
1500 imes 200	0,234	4,7	3,8	5,2	4,2	4,4	3,6
1500 imes 300	0,380	6,7	5,5	7,5	6,0	6,3	5,0
1500 × 400	0,526	9,5	7,1	10,6	7,9	7,9	6,2
2000 imes 100	0,118	3,5	2,9	3,8	3,2	3,5	3,0
2000×200	0,314	6,1	5,0	6,8	5,6	5,8	4,7
2000×300	0,510	8,6	7,1	9,7	7,9	8,4	6,6
2000×400	0,706	12,5	9,2	14,0	10,3	10,5	8,2
2500 imes 100	0,148	4,1	3,6	4,8	4,1	4,3	3,7
2500×200	0,394	7,6	6,2	8,6	7,1	7,2	5,8
2500×300	0,640	10,9	9,0	12,4	10,1	10,4	8,2
2500×400	0,886	15,5	11,6	17,6	13,1	13,3	10,2
3000 imes 100	0,178	5,1	4,3	5,9	4,9	5,1	4,4
3000×200	0,474	9,0	7,4	10,3	8,5	8,6	7,0
3000 imes 300	0,770	12,8	10,6	14,8	12,1	12,4	9,8
3000 imes 400	1,066	18,5	13,7	21,2	15,7	15,6	12,1

Аэродинамические характеристики напольных решеток РНБ, РНР при подаче или удалении воздуха

POLAR

Воздухораспределительные

устройства

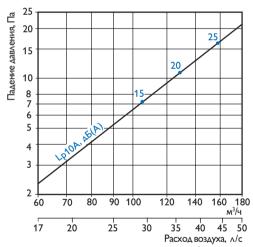

Напольные диффузоры FDC предназначены для подачи воздуха системами вентиляции и кондиционирования в помещениях, оборудованных фальшполами (аудитории, концертные залы, театры, офисные помещения, помещения с телекоммуникационным оборудованием, компьютерные центры и т.п.). Отличные акустические характеристики позволяют применять диффузоры FDC в помещениях, к которым предъявляются повышенные требования к уровню шума.

Диффузоры формируют быстрозатухающую закрученную струю с высокой эжектирующей способностью, что позволяет обеспечить подачу воздуха с большим температурным градиентом и получить при этом равномерное распределение температуры в обслуживаемой зоне.

Диффузоры FDC изготавливаются из стойкого к механическим воздействиям, негорючего пластика в виде круглой решетки, снабжённой установочным фланцем, монтажным кольцом и пылесборником.

Напольные диффузоры устанавливаются непосредственно в фальшпол; при монтаже диффузор размещается в установочном фланце, который прижимается к фальшполу монтажным кольцом. Подача воздуха осуществляется либо при помощи воздуховодов, либо без воздуховодов, за счет избыточного статического давления в пространстве фальшпола.

Напольные диффузоры выпускаются серого (RAL 7040) или черного (RAL 7021) цветов.



Е

- I. Диффузор;
- 2. Установочный фланец;
- 3. Монтажное кольцо;
- 4. Пылесборник.

Характеристики диффузоров FDC

Модель	А,	Ø B,	ØС,	Ø D,	Е,	Макс. нагрузка,
	мм	mm	мм	мм	мм	кг
FDC 200	145	220	210	200	250	550

При применении в помещениях с постоянным пребыванием людей максимальный расход воздуха $L_{0max} = 120 \text{ м}^3/\text{ч}$.

Шумовые характеристики

Октавный уровень звуковой мощности и корректированный уровень звуковой мощности определяются по формулам:

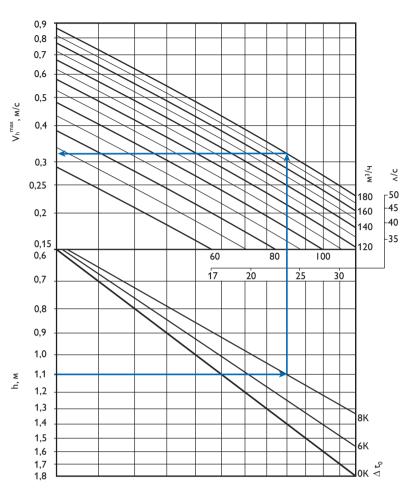
 $L_{\text{wort}} = L_{\text{p10A}} + K_{\text{ort}};$

 $L_{wA} = L_{p10A} + 4$.

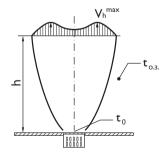
где: $L_{\mbox{\tiny WOKT}}$, д $\mbox{\scriptsize Б}$ — октавный уровень звуковой мощности;

 L_{p10A} , дБ(A) — уровень звука (корректированный уровень звукового давления для помещения с эквивалентной площадью звукопоглощения 10 m^2) определяется по диаграмме;

Кокт – поправочный коэффициент;


 L_{wA} , дS(A) – корректированный уровень звуковой мощности.

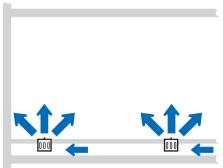
Masass		Поправочный коэффициент Кокт, дБ											
Модель	63	125	250	500	1000	2000	4000	8000					
FDC 200	14	9	8	2	-3	-10	-16	-27					


Снижение шума

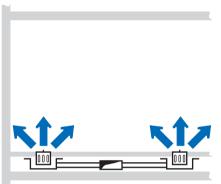
Maran		Снижение шума ∆L, дБ										
Модель	63	125	250	500	1000	2000	4000	8000				
FDC 200	14	8	6	4	3	4	4	6				

___ POLAR ___ BEAR

При максимальном расходе и в режиме охлаждения избыточная температура воздуха в приточной струе (разница температур подаваемого воздуха и воздуха в обслуживаемой зоне) на расстоянии 1,1-1,7 м от диффузора не превышает 1° С. Это связано с тем, что формируемая быстрозатухающая приточная струя обладает большой эжектирующей способностью и, после смешения, её температура постепенно выравнивается с температурой воздуха в обслуживаемом помещении.

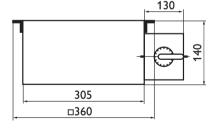


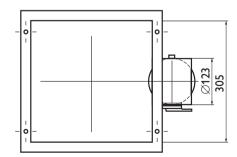
t₀ - температура приточного воздуха;


 $t_{\text{o.з.}}$ – средняя температура воздуха в обслуживаемой зоне;

 $\Delta t_0 = t_0 - t_{0.3.}$ — избыточная температура воздуха в приточной струе.

Примеры монтажа




Воздух подаётся в подпольное пространство; подача воздуха в обслуживаемое помещение осуществляется при помощи избыточного статического давления.

Присоединение диффузоров к воздуховоду осуществляется с помощью камеры статического давления.

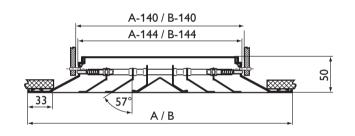
Камера статического давления

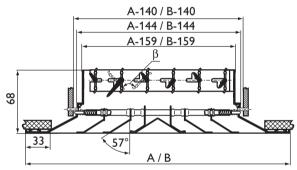
Воздухораспределительные

устройства

Диффузоры АПН, АПР

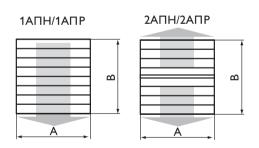
Потолочные диффузоры АПН, АПР предназначены для подачи и удаления воздуха системами вентиляции и кондиционирования в помещениях различного назначения.

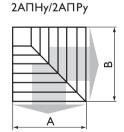

Диффузоры АПН/АПР представляют собой корпус прямоугольной формы с центральной частью в виде съемного блока из направляющих пластин, который при необходимости легко демонтируется. Блок направляющих пластин изготавливается с односторонней, двухсторонней, двухсторонней угловой, трёхсторонней или четырёхсторонней подачей воздуха.

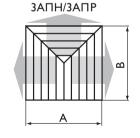

Диффузоры АПР дополнительно оснащены встроенным в корпус регулятором расхода воздуха. Регулирование расхода осуществляется вручную, без использования инструмента, при помощи специального флажкового механизма.

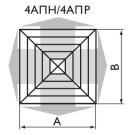
Минимальный размер диффузоров 225×225 мм, максимальный – 1050×1050 мм, с шагом 75 мм.

Потолочные диффузоры изготавливаются из алюминия и окрашиваются методом порошкового напыления в белый цвет (RAL 9016). При изготовлении на заказ возможна окраска диффузоров в любой цвет по каталогу RAL.


АПН АПР






Конструктивные схемы АПН, АПР

Варианты исполнения

Характеристики диффузоров АПН, АПР

Размер,	F ₀ ,		F _{ж.c.}	Вес, кг			
A×B, мм	M^2	4АПН	3АПН	2АПН	1АПН	АПН	АПР
300 imes 300	0,019	0,015	0,014	0,013	0,012	0,7	0,9
450 × 450	0,083	0,041	0,039	0,036	0,033	1,6	2,1
600 × 600	0,192	0,086	0,081	0,076	0,069	2,7	3,9

Данные для подбора диффузоров АПН, АПР при подаче воздуха настилающимися веерными струями

		L _{wA} ≤ 20	дБ(А)			$L_{wA} = 25$	дБ(A)			L_{wA}	=35 дЕ	(A)			$L_{\rm wA} = 45$	дБ(А)	
Размер А×В, мм	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- сть, м / _x , м/с	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- сть, м / _x , м/с	L ₀ , м ³ /ч	ΔР _{полн} , Па		Дально- ойность, іри V _x , м/	M	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- ость, м / _х , м/с
			0,2	0,5			0,2	0,5			0,2	0,5	0,75			0,5	0,75
	4АПН, 4АПР																
300×300	90	3	2,0	0,8	180	10	4,0	1,6	270	23	6,0	2,4	1,6	390	49	3,5	2,3
450 × 450	230	1	2,4	1,0	470	6	5,0	2,0	710	14	7,5	3,0	2,0	1060	30	4,5	3,0
600 × 600	410	1	2,8	1,1	820	3	5,7	2,3	1240	8	8,6	3,5	2,3	1840	17	5,1	3,4
	ЗАПН, ЗАПР																
300×300	90	3	2,5	1,0	180	12	5,1	2,0	270	26	7,6	3,0	2,0	390	55	4,4	2,9
450 × 450	230	2	3,1	1,2	470	7	6,3	2,5	710	15	9,6	3,8	2,6	1060	34	5,7	3,8
600 × 600	410	1	3,6	1,4	820	4	7,3	2,9	1240	9	11	4,4	2,9	1840	19	6,5	4,3
						2A	ПН, 2А	ПР, 2А	ιПНу, 2	АПРу							
300×300	90	3	4,2	1,7	180	13	8,3	3,3	270	30	13	5,0	3,3	390	62	7,2	4,8
$\textbf{450} \times \textbf{450}$	230	2	5,1	2,0	470	8	10	4,2	710	17	16	6,3	4,2	1060	39	9,4	6,3
600 × 600	410	1	5,9	2,4	820	4	12	4,8	1240	10	18	7,2	4,8	1840	22	11	7,1
	1АПН, 1АПР																
300×300	90	4	5,9	2,4	180	16	12	4,7	270	37	18	7,1	4,7	390	76	10	6,8
450 × 450	230	2	7,2	2,9	470	9	15	5,9	710	21	22	8,9	5,9	1060	47	13	8,9
600 × 600	410	1	8,4	3,4	820	5	17	6,8	1240	12	25	10	6,8	1840	26	15	10

Данные для подбора диффузоров АПН, АПР при удалении воздуха

Размеры	L _{wA} = 25	5 дБ(A)	$L_{wA} = 35$	5 дБ(A)	$L_{wA} = 45$	5 дБ(A)								
A×B, MM	L ₀ , м ³ /ч	ΔР _{полн} , Па	L ₀ , м ³ /ч	ΔР _{полн} , Па	L ₀ , м ³ /ч	ΔР полн, Па								
			4АПН, 4АП	P										
300×300	150	5	200	10	300	22								
450 × 450	500	5	700	10	1000	20								
600 × 600	1100	5	1500	8	2200	18								
	ЗАПН, ЗАПР													
300×300	150	6	200	11	300	24								
450 × 450	500	6	700	11	1000	23								
600 × 600	1100	5	1500	10	2200	21								
			2АПН, 2АПР, 2АПН	у, 2АПРу										
300 × 300	150	7	200	12	300	28								
450 × 450	500	6	700	12	1000	26								
600 × 600	1100	6	1500	11	2200	23								
			1АПН, 1АП	Р										
300 × 300	120	6	170	11	250	24								
450 × 450	420	6	580	11	850	23								
600 × 600	850	4	1300	10	1800	19								

В диффузорах с регулятором расхода табличные значения $\Delta P_{\text{полн}}$ и L_{wA} корректируются:

$\Delta P_{\text{полн}}^{\text{АПР}} = K \times \Delta P_{\text{полн}}$	
$L_{\mathrm{wA}}^{\mathrm{A}\Pi\mathrm{P}} = L_{\mathrm{wA}} + \Delta L_{\mathrm{wA}}$	

% открытия регулятора расхода	100% β=0°	50% $\beta = 60^{\circ}$	30% $\beta = 90^{\circ}$
K	1,2	3,2	4
ΔL _{wA} , дБ(A)	0	5	7

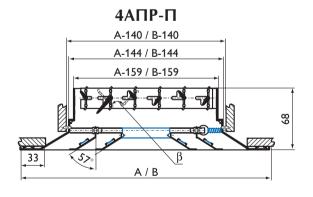
Воздухораспределительные

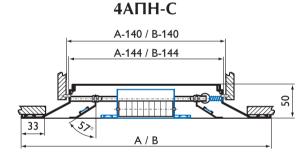
устройства

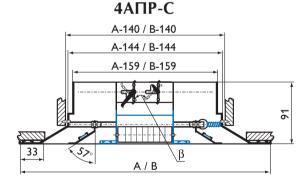
Диффузоры 4АПН-П, 4АПР-П, **4АПН-С, 4АПР-С**

Четырехсторонние потолочные диффузоры 4АПН-П, 4АПР-П, 4АПН-С, 4АПР-С предназначены для подачи и удаления воздуха системами вентиляции и кондиционирования в помещениях различного назначения.

Диффузоры 4АПН-П/4АПН-С представляют собой корпус квадратной формы с центральной частью в виде съемного блока из направляющих пластин с перфорированной центральной частью у 4АПН-П и сотовой вставкой у 4АПН-С, который при необходимости легко демонтируется.


Диффузоры формируют комбинированный приточный поток: симметричную настилающуюся веерную струю через щель между корпусом и внутренним диффузором и вертикальную коническую струю через перфорированную или сотовую часть, что обеспечивает большую равномерность параметров воздуха в обслуживаемой зоне.


Диффузоры 4АПР-П, 4АПР-С дополнительно оснащены встроенным в корпус регулятором расхода воздуха. У 4АПР-С регулятор устанавливается только на сотовую часть.


Минимальный размер диффузоров 300×300 мм, максимальный - 600×600 мм, с шагом — 150 мм для 4АПН-С и 75 мм для 4АПН-П.

Потолочные диффузоры изготавливаются из алюминия и окрашиваются методом порошкового напыления в белый цвет (RAL 9016). При изготовлении на заказ возможна окраска диффузоров в любой цвет по каталогу RAL.

4АПН-П A-140 / B-140 A-144 / B-144 A / B

Характеристики диффузоров 4АПН-П, 4АПР-П, 4АПН-С, 4АПР-С

Размер	F ₀ ,	F _{ж.c.}	, M ²	Вес, кг						
A×B, мм	M^2	4АПН-П	4АПН-С	4АПН-П	4АПР-П	4АПН-С	4АПР-С			
300 imes 300	0,019	0,016	0,017	0,7	0,9	0,7	0,9			
450 × 450	0,083	0,050	0,057	1,6	2,2	1,6	2,1			
600 × 600	0,192	0,109	0,119	2,8	3,9	2,5	3,1			

Данные для подбора диффузоров 4АПН-П, 4АПР-П, 4АПН-С, 4АПР-С при подаче воздуха

		$L_{\rm wA} < 20$ дБ(A)						l	.wA = 2!	дБ (А	()		L _{wA} =	=35 д	Б(А)		L	$_{\text{WA}} = 45$	дБ(А	A)		
Размер А×В, мм	Вид струи	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- сть, м / _{х, м} /с	L ₀ ,	∆Р _{полн} , Па	бойно	ьно- сть, м / _x , м/с	L ₀ ,	∆Р _{полн} , Па		ьно- сть, м / _{х, м} /с	L ₀ ,	∆Р _{полн} , Па	боі	↓ально йность и V _x , м	, M	L ₀ , м ³ /ч	∆Р _{полн} , Па		ьно- ость, м / _х , м/с
				0,2	0,5			0,2	0,5			0,2	0,5			0,2	0,5	0,75			0,5	0,75
300 × 300	гориз.	50	1	1,1	0,4	140	6	3,1	1,2	200	11	11 4,4	1,8	300	25	7,0	2,7	1,8	450	57	4,0	2,7
300 ^ 300	вертик.	30		1,5	0,6	1 10		4,2	1,7		<u> </u>	6,0	2,4	300	23	9,0	3,6	2,4	130	37	5,4	3,6
450 × 450	гориз.	150	<1	1,6	0,6	400	3	4,2	1,7	750	11	8,0	3,2	1100	24	12	4,7	3,1	1600	52	6,8	4,5
430 ^ 430	вертик.	130	,	2,2	0,9	400	,	5,8	2,3	750	' '	11	4,3	1100	27	16	6,4	4,2	1000	32	9,2	6,2
600 × 600	гориз.	350	< 1	2,5	1,0	800	2	5,6	2,2	1500	8	10	4,2	2000	15	14	5,6	3,7	3000	34	8,0	5,6
600×600	вертик.	330	\	3,4	1,3	000	2	7,6	3,0	1500	U	14	5,7	2000	13	19	7,6	5,1	3000	34	11	7,6

Данные для подбора диффузоров 4АПН-П, 4АПР-П, 4АПН-С, 4АПР-С при удалении воздуха

Размер	L _{wA} = 25	5 дБ(A)	L _{wA} = 35	5 дБ(A)	L _{wA} = 45 дБ(A)			
$A \times B$, mm	L ₀ , м ³ /ч	ΔР полн, Па	L ₀ , м ³ /ч	$\Delta P_{\text{полн}}$, Πa	L ₀ , м ³ /ч	ΔР _{полн} , Па		
300 × 300	250	18	400	45	550	85		
450 × 450	800	13	1300	34	1800	65		
600 × 600	1700	11	2400	22	3500	46		

В диффузорах с регулятором расхода табличные значения $\Delta P_{\text{полн}}$ и L_{wA} корректируются:

$\Delta P_{\text{полн}}^{\text{4A\PiP-\Pi, 4A\PiP-C}} = K \times \Delta P_{\text{полн}}$
$L_{\mathrm{wA}}^{4\mathrm{A}\Pi\mathrm{P} ext{-}\Pi,\;\mathrm{A}\Pi\mathrm{P} ext{-}\mathrm{C}} = L_{\mathrm{wA}} + \Delta L_{\mathrm{wA}}$

% открытия регулятора расхода	100% β=0°	50% β=60°	30% β=90°
K	1,2	3,2	4
ΔI , $\Delta F(\Delta)$	0	5	7

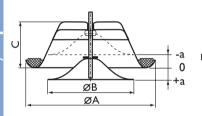
POLAR

Воздухораспределительные устройства

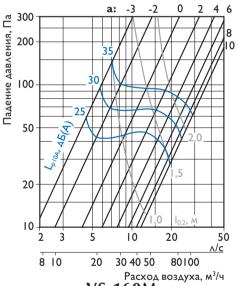
Приточные диффузоры VS...М

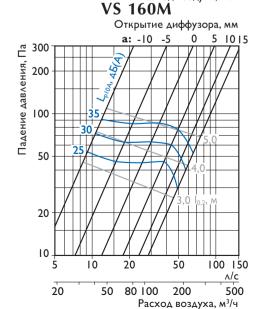
Диффузоры VS...М предназначены для подачи воздуха системами вентиляции и кондиционирования в помещениях различного назначения.

Диффузоры VS...М состоят из корпуса, присоединительного патрубка и подвижного дискового обтекателя. При перемещении обтекателя вдоль оси корпуса осуществляется регулирование расхода воздуха, изменяется дальнобойность и вид формируемой приточной струи: от веерной горизонтальной, настилающейся на потолок, до конической вертикальной. При необходимости VS...М можно использовать в качестве запорного клапана.

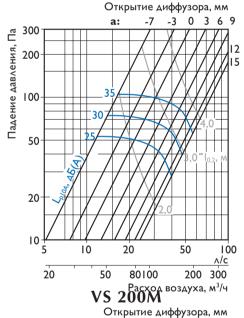

Диффузоры изготавливаются из стали и окрашиваются методом порошкового напыления в белый цвет.

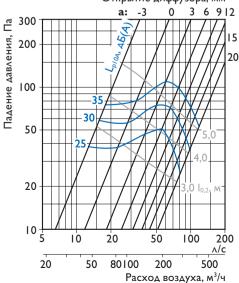
Монтаж осуществляется с помощью присоединительного патрубка, который крепится самонарезающими винтами к воздуховоду или к подшивному потолку.


Характеристики диффузоров VS...М


Модель	ØA	ØB	С	ØD	ØE	Вес, кг
VS 100M	140	92	40	122	99	0,24
VS 125M	170	111	46	148	124	0,33
VS 160M	202	135	54	184	159	0,47
VS 200M	254	194	64	225	199	0,70

20 'nD




VS 100M Открытие диффузора, мм

VS 125M

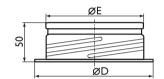
POLAR

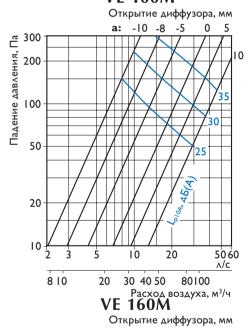
Вытяжные диффузоры VE...М

Диффузоры VE...М предназначены для удаления воздуха системами вентиляции и кондиционирования в помещениях различного назначения.

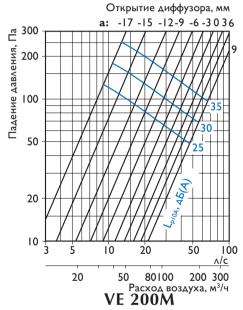
Диффузоры VE...М состоят из корпуса, присоединительного патрубка и подвижного дискового обтекателя. При перемещении обтекателя вдоль оси корпуса осуществляется регулирование расхода воздуха. При необходимости VE...М можно использовать в качестве запорного клапана.

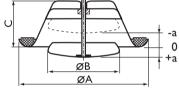
Диффузоры изготавливаются из стали и окрашиваются методом порошкового напыления в белый цвет.

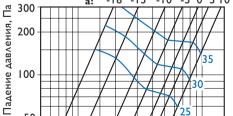

Монтаж осуществляется с помощью присоединительного патрубка, который крепится самонарезающими винтами к воздуховоду или к подшивному потолку.

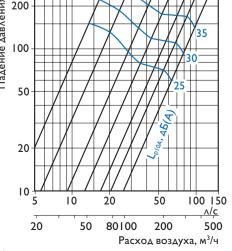

Характеристики диффузоров VE...М

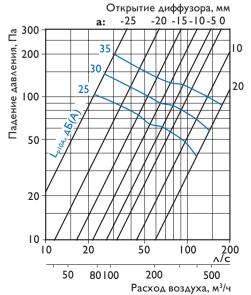
Модель	ØA	ØB	С	ØD	Ø E	Вес, кг
VE 100M	140	75	40	122	99	0,23
VE 125M	170	99	46	148	124	0,33
VE 160M	202	119	54	184	159	0,47
VE 200M	254	157	64	225	199	0,67

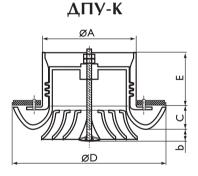

-5 0 5 10




VE 100M






-15 -10

ΔΠУ-M ØA ØD

Воздухораспределительные устройства

Диффузоры универсальные ДПУ-М, ДПУ-К

Диффузоры ДПУ-М и ДПУ-К предназначены для подачи и удаления воздуха в системах вентиляции и кондиционирования.

Диффузоры ДПУ-М и ДПУ-К состоят из корпуса, присоединительного патрубка и подвижного обтекателя у ДПУ-М и подвижной веерной вставки у ДПУ-К.

При перемещении обтекателя / веерной вставки вдоль оси корпуса осуществляется регулирование расхода воздуха, изменяется дальнобойность и вид формируемой приточной струи: от вертикальной смыкающейся конической до горизонтальной веерной, что позволяет реализовать посезонное регулирование систем вентиляции и кондиционирования воздуха.

При необходимости диффузоры ДПУ-М можно использовать в качестве запорного клапана.

Диффузоры изготавливаются из полипропилена белого цвета.

Монтаж осуществляется с помощью присоединительного патрубка, который крепится самонарезающими винтами к воздуховоду или к подшивному потолку.

При изготовлении диффузоров ДПУ-М на заказ возможна окраска в любой цвет по каталогу "эксклюзив" (см. Приложение 2 на стр. 668).

Характеристики диффузоров ДПУ-М, ДПУ-К

Модель	F_0 , M^2	Ø A, мм	Ø D, мм	E, MM	С, мм	Вес, кг
ДПУ-М 100	0,007	100	140	55	16	0,20
ДПУ-М 125	0,011	125	170	55	16	0,25
ДПУ-М 160	0,018	160	215	60	16	0,35
ДПУ-М 200	0,029	200	258	60	16	0,45
ДПУ-М 250	0,046	250	308	60	16	0,66
ДПУ-К 100	0,007	100	140	55	16	0,20
ДПУ-К 125	0,011	125	170	55	16	0,25
ДПУ-К 160	0,018	160	215	60	16	0,35
ДПУ-К 200	0,029	200	258	60	16	0,45
ДПУ-К 250	0,046	250	308	60	16	0,66

Данные для подбора диффузоров ДПУ-М, ДПУ-К при подаче воздуха

				L _{wA} ≤20	дБ(A)			$L_{wA} = 25$	дБ(А))		L _{wA}	=35 дІ	5(A)			$L_{wA} = 45$	дБ (А))
Размер, ∅А, мм	N*	b, мм	L ₀ , м ³ /ч	∆Р _{полн} , Па	Далі бойно при V	СТЬ, М / _х , м/с	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно при \	ьно- ость, м / _х , м/с	L ₀ , м ³ /ч	∆Р _{полн} , Па	бо п	Дально- йность, ри V _x , м	. м /с	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно при \	ьно- ость, м √ _х , м/с
					0,2	0,5			0,2	0,5			0,2	0,5	0,75			0,5	0,75
	ı	ı	ı		IY-M –		T			· ·		ная стр	, .	0,1A)	ı	ı			
100	10	10	55	34	0,7	0,3	80	73	1,1	0,4	120	163	1,6	0,6	0,4	160	290	0,8	0,6
125	12	12	85	33	0,9	0,4	120	66	1,3	0,5	170	133	1,8	0,7	0,5	230	243	1,0	0,6
160	13	16	140	34	1,2	0,5	220	83	1,8	0,7	330	187	2,7	1,1	0,7	410	288	1,4	0,9
200	16	20	200	26	1,3	0,5	320	68	2,1	0,8	450	134	2,9	1,2	0,8	610	246	1,6	1,1
250	20	25	280	21	1,4	0,6	520	71	2,7	1,1	720	136	3,7	1,5	1,0	1000	263	2,1	1,4
100				T				ная нас		· ·		ая стр				100			0.
100	15	15	80	19	0,8	0,3	90	24	0,9	0,4	130	51	1,3	0,5	0,3	180	98	0,7	0,5
125	19	19	130	21	1,0	0,4	160	31	1,3	0,5	210	54	1,7	0,7	0,4	290	103	0,9	0,6
160	19	24	180	15	1,1	0,4	270	33	1,7	0,7	390	70	2,4	1,0	0,6	540	133	1,3	0,9
200	24	30	250	11	1,2	0,5	380	25	1,9	0,7	530	49	2,6	1,0	0,7	700	86	1,4	0,9
250	30	38	350	9	1,4	0,5	620	27	2,4	1,0	860	52	3,4	1,3	0,9	1180	97	1,8	1,2
100	20	20	0.0	1.0		ПУ-М						/я (b = 0		1 -	1.0	200	0.0	2.0	1.2
100		20	80	16	2,0	0,8	100	25	2,5	1,0	150	55	3,7	1,5	1,0	200	98	2,0	1,3
125	25	25	130	17	2,6	1,0	180	32	3,6	1,4	250	62	5,0	2,0	0,4	350	122	2,8	1,9
160 200	26 32	32 40	180 250	12	2,8	1,1	330	40	5,1	2,0	450 600	75 50	7,0	2,8	0,5	620 800	143 92	3,9	2,6
250	40	50	350	7	3,1 3,4	1,2 1,4	450 720	29	5,5 7,0	2,2	990	52 56	7,3 10	2,9 3,8	0,6	1350	104	3,9 5,2	2,6 3,5
230	40	30	330		,	,			,	,		ая стру		,	0,7	1330	104	3,2	3,3
100	5	5	100	26	1,6	0,7	130	4 3	2,1	щаяся 0,8	190	ая стру 92	ж (b = t	1,2	0,8	260	172	1 <i>,7</i>	1,1
125	6	6	130	17	1,7	0,7	160	26	2,1	0,8	220	50	2,9	1,1	0,8	300	93	1,6	1,0
160	6,5	8	180	13	1,8	0,7	240	22	2,4	1,0	330	42	3,3	1,1	0,9	480	89	1,0	1,3
200	8	10	250	9	2,0	0,8	330	16	2,6	1,1	500	37	4,0	1,6	1,1	700	73	2,2	1,5
250	10	13	350	7	2,2	0,9	500	15	3,2	1,3	750	33	4,8	1,9	1,3	1000	59	2,5	1,7
200	10	13	330	,	,	ЛУ-К		икальн						1,3	1,3	1000	33	2,3	1,7
100	10	10	100	21	2,5	1,0	130	35	3,2	1,3	190	75	4,7	1,9	1,3	260	141	2,6	1,7
125	12	12	130	14	2,6	1,0	160	22	3,2	1,3	220	41	4,4	1,7	1,2	300	76	2,4	1,6
160	13	16	180	10	2,8	1,1	240	18	3,7	1,5	330	34	5,1	2,0	1,4	480	72	3,0	2,0
200	16	20	250	8	3,1	1,2	330	13	4,0	1,6	500	30	6,1	2,4	1,6	700	59	3,4	2,3
250	20	25	350	6	3,4	1,4	500	12	4,9	1,9	750	27	7,3	2,9	1,9	1000	48	3,9	2,6
						ПУ-К -	верти	ікальна				b=0							
100	15	15	100	19	3,3	1,3	130	32	4,3	1,7	190	68	6,3	2,5	1,7	260	128	3,5	2,3
125	19	19	130	13	3,4	1,4	160	20	4,2	1,7	220	37	5,8	2,3	1,6	300	69	3,2	2,1
160	19	24	180	9	3,7	1,5	240	16	5,0	2,0	330	31	6,8	2,7	1,8	480	66	4,0	2,7
200	24	30	250	7	4,1	1,6	330	12	5,4	2,2	500	28	8,2	3,3	2,2	700	54	4,6	3,0
250	30	38	350	5	4,5	1,8	500	11	6,5	2,6	750	25	9,7	3,9	2,6	1000	44	5,2	3,5

^{*} N - количество оборотов центральной вставки против часовой стрелки, вращение осуществляется из положения заподлицо с корпусом.

Данные для подбора диффузоров ДПУ-М, ДПУ-К при удалении воздуха

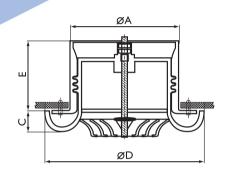
Размер,		b,	$L_{wA} = 25$	5 дБ(А)	$L_{wA} = 35$	5 дБ(A)	$L_{wA} = 4$	5 дБ(A)
Ø A , mm	N*	мм	L ₀ , м ³ /ч	∆Р _{полн} , Па	L ₀ , м ³ /ч	∆Р _{полн} , Па	L ₀ , м ³ /ч	ΔР _{полн} , Па
				$\Delta \Pi Y - M, b = 0.14$				
100	10	10	80	64	120	145	150	226
125	12	12	100	39	170	112	230	205
160	13	16	170	40	240	79	340	159
200	16	20	250	35	300	50	500	138
250	20	25	350	27	450	44	750	123
			Д	$\Pi Y - M, b = 0.15$	A			
100	15	15	130	48	170	81	230	149
125	19	19	170	31	230	57	330	118
160	19	24	250	24	370	52	500	96
200	24	30	350	19	510	40	750	87
250	30	38	500	15	700	30	1000	61
			Į	$\Delta\Pi Y-M, b=0.24$	4			
100	20	20	130	32	170	55	230	101
125	25	25	170	21	230	39	330	80
160	26	32	250	16	370	36	500	65
200	32	40	350	13	510	27	750	59
250	40	50	500	10	700	20	1000	42
				$A\Pi Y - K, b = 0.05$	A			
100	5	5	100	32	140	63	190	116
125	6	6	140	24	200	50	270	90
160	6,5	8	200	18	300	39	450	89
200	8	10	300	16	450	36	630	70
250	10	13	400	11	600	25	900	57
				$\Delta\Pi V - K, b = 0.14$				
100	10	10	100	20	140	39	190	72
125	12	12	140	15	200	31	270	56
160	13	16	200	11	300	25	450	55
200	16	20	300	10	450	22	630	44
250	20	25	400	7	600	16	900	36
				$L\Pi V - K, b = 0,15$				1
100	15	15	100	18	140	35	190	65
125	19	19	140	14	200	28	270	51
160	19	24	200	10	300	22	450	50
200	24	30	300	9	450	20	630	40
250	30	38	400	6	600	14	900	32

^{*} N — количество оборотов центральной вставки против часовой стрелки, вращение осуществляется из положения заподлицо с корпусом.

Диффузоры сопловые ДПУ-С

Диффузоры ДПУ-С предназначены для подачи воздуха в системах вентиляции и кондиционирования компактными струями с высокой дальнобойностью.

Диффузор ДПУ-С состоит из корпуса, присоединительного патрубка и установленной соосно неподвижной конфузорной вставки.


Диффузоры изготавливаются из полипропилена белого цвета.

Монтаж осуществляется с помощью присоединительного патрубка, который крепится самонарезающими винтами к воздуховоду или к подшивному потолку.

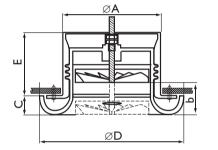
Характеристики диффузоров ДПУ-С

Модель	F ₀ , M ²	Ø A, мм	Ø D , мм	Е, мм	С, мм	Вес, кг
ДПУ-С 125	0,011	125	170	55	16	0,25
ДПУ-С 160	0,018	160	215	60	16	0,35
ДПУ-С 200	0,029	200	258	60	16	0,45
ДПУ-С 250	0,046	250	308	60	16	0,66

Данные для подбора диффузоров ДПУ-С при подаче воздуха

		ı	$_{-wA} = 20$) дБ (А)	I	$L_{wA} = 25$	дБ(А)		L _{wA} :	= 35 д	Б(А)		I	$L_{wA} = 45$	дБ (А	.)	I	$L_{wA} = 60$	дБ(А)
	А, м	L ₀ , м ³ /ч	∆Р _{полн} , Па	4 1.7	ьно- сть, м / _x , м/с	L ₀ , м ³ /ч	∆Р _{полн} , Па	Далі бойно при V	сть, м	L ₀ , м ³ /ч	ΔР _{полн} , Па	бо	Дально йность ри V _x , м	, M	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- ость, м / _х , м/с	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- ость, м √ _х , м/с
				0,2	0,5			0,2	0,5	/VI / Ч		0,2	0,5	0,75			0,5	0,75			0,5	0,75
12	25	60	15	6,8	2,7	90	30	10	4,1	120	56	14	5,4	3,6	150	87	6,8	4,5	220	188	9,9	6,6
10	50	80	9	7,0	2,8	120	20	11	4,2	170	40	15	5,9	3,9	220	66	7,7	5,1	350	168	13	8,6
20	00	120	8	8,3	3,3	170	16	12	4,7	240	32	17	6,7	4,4	330	60	9,2	6,1	520	149	14	10
2!	50	180	7	10	4,0	240	13	13	5,3	350	27	19	7,7	5,1	480	50	11	7,0	680	101	15	10

Диффузоры ДПУ-В


Диффузоры ДПУ-В предназначены для подачи и удаления воздуха системами вентиляции и кондиционирования.

В диффузоре ДПУ-В в качестве подвижной части устанавливается цилиндрическое кольцо с размещенным в нем закручивателем.

В диффузорах ДПУ-В при перемещении кольца с закручивателем вдоль оси корпуса изменяются вид формируемой приточной струи (от вертикальной смыкающейся конической до горизонтальной веерной) и ее дальнобойность, что позволяет реализовать посезонное регулирование систем вентиляции и кондиционирования воздуха.

Диффузоры изготавливаются из полипропилена белого цвета.

Монтаж осуществляется с помощью присоединительного патрубка, который крепится самонарезающими винтами к воздуховоду или к подшивному потолку.

Характеристики диффузоров ДПУ-В

Модель	F ₀ , M ²	Ø A, мм	Ø D, мм	Е, мм	С, мм	Вес, кг
ДПУ-В 100	0,007	100	140	55	16	0,20
ДПУ-В 125	0,011	125	170	55	16	0,25
ДПУ-В 160	0,018	160	215	60	16	0,35
ДПУ-В 200	0,029	200	258	60	16	0,45

Данные для подбора диффузоров ДПУ-В при подаче воздуха

			$L_{wA} = 3$	5 дБ(А)			$L_{\rm wA} = 43$	5 дБ(А)			L_{wA}	=50 дl	5(A)			$L_{\text{wA}} = 60$) дБ (А)	
Размер, ∅А, мм	N*	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- ость, м / _х , м/с	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- сть, м / _x , м/с	L ₀ , м³/ч	∆Р _{полн} , Па	бо	Дально йность ри V _x , <i>N</i>	, м	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- сть, м / _x , м/с
				0,2	0,5			0,2	0,5			0,2	0,5	0,75			0,5	0,75
					Горизо	нтальная настилающаяся в 65 63 2,3 0,9				еерная	струя	(b = -20)	мм)					
100	20	40	24	1,4	0,6	65	63	2,3	0,9	85	109	3,0	1,2	0,8	110	182	1,6	1,0
125	20	45	15	1,3	0,5	70	37	1,9	0,8	100	77	2,8	1,1	0,7	150	172	1,7	1,1
160	16	55	11	1,2	0,5	100	36	2,2	0,9	160	91	3,5	1,4	0,9	230	189	2,0	1,3
200	16	95	15	1,6	0,7	170	48	2,9	1,2	220	80	3,8	1,5	1,0	310	159	2,1	1,4
						Верті	икальна	ая кони	ческая	струя	(b=0)	ім)						
100	0	40	24	2,4	1,0	65	63	3,9	1,6	85	109	5,2	2,1	1,4	110	182	2,7	1,8
125	0	45	15	2,1	0,9	70	37	3,3	1,3	100	77	4,8	1,9	1,3	150	172	2,9	1,9
160	0	55	11	2,0	0,8	100	36	3,7	1,5	160	91	6,0	2,4	1,6	230	189	3,4	2,3
200	0	95	15	2,8	1,1	170	48	5,0	2,0	220	80	6,5	2,6	1,7	310	159	3,6	2,4

^{*} N – количество оборотов центральной вставки по часовой стрелке, вращение осуществляется из положения заподлицо с корпусом.

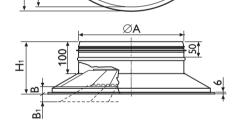
Диффузоры конические ДКУ

Конические диффузоры ДКУ предназначены для подачи и удаления воздуха системами вентиляции и кондиционирования в изотермическом и неизотермическом режимах (нагрев и охлаждение) из верхней зоны помещения.

Конические диффузоры состоят из корпуса с подводящим патрубком и центральной вставки, выполненной в виде набора конических колец, неподвижно закрепленных относительно друг друга.

Конструкция диффузоров ДКУ позволяет вращением центральной вставки регулировать форму струи от горизонтальной веерной при подаче охлажденного воздуха (вставка полностью вывернута) до вертикальной конической при подаче подогретого воздуха (вставка полностью ввернута).

Их рекомендуется применять для подачи воздуха в общественных и производственных помещениях больших размеров (концертные, спортивные, выставочные залы, стадионы, торговые комплексы, производственные цеха, вокзалы, ангары и т.п.).


Диффузоры устанавливаются на отводах круглых воздуховодов при открытой прокладке воздуховодов или встраиваются в подвесные потолки, при этом обеспечивается настилание горизонтальной струи на потолок. Монтаж к воздуховоду осуществляется с помощью самонарезающих винтов. Герметичность соединения с подводящим воздуховодом обеспечивается резиновым уплотнением.

Диффузоры изготавливаются из стали и окрашиваются методом порошкового напыления в белый цвет (RAL 9016). При изготовлении на заказ возможна окраска диффузоров в любой цвет по каталогу RAL.

Характеристики диффузоров ДКУ

Модель	F ₀ , M ²	Ø A, мм	В, мм	В1, мм	ØС, мм	Ø С 1, мм	Н ₁ , мм	Вес, кг
ДКУ 250	0,049	249	10	20	572	525	174	3,2
ДКУ 315	0,078	314	15	20	633	591	174	4,1
ДКУ 355	0,099	354	15	20	660	619	176	4,5
ДКУ 400	0,125	399	20	20	700	658	176	4,8

Данные для подбора диффузора ДКУ при подаче воздуха

			$L_{wA} = 2$	5 дБ(А)			L_{wA}	=35 дІ	5(A)			L _{wA} :	=45 дІ	5(A)			$L_{wA} = 60$) дБ (А)	
Размер, ∅ А , мм	N*	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- сть, м [/] _х , м/с	L ₀ , м ³ /ч	∆Р _{полн} , Па	бо	∆ально йность ои V _× , м	, M	L ₀ , м ³ /ч	∆Р _{полн} , Па	бо	∆ально йность ои V _× , <i>м</i>	, M	L ₀ , м ³ /ч	ΔР _{полн} , Па	бойно	ьно- ость, м / _х , м/с
		, .		0,2	0,5	, .	- 14	0,2	0,5	0,75	, .	114	0,2	0,5	0,75	,,,,,	- 1	0,5	0,75
							Ha	стилан	ощаяся	я веерн	ная стр	уя							
250		610	14	5,0	2,0	830	27	6,8	2,7	1,8	1150	51	9,4	3,8	2,5	1800	125	5,9	3,9
315	+13	1000	15	6,5	2,6	1200	22	7,8	3,1	2,1	1600	39	10	4,1	2,8	2300	81	5,9	4,0
355	T 13	1400	19	8,0	3,2	1800	31	10	4,1	2,8	2300	50	13	5,3	3,5	3100	91	7,1	4,7
400		1400	12	7,1	2,9	1800	19	9,2	3,7	2,5	2500	37	13	5,1	3,4	3700	81	7,6	5,0
							Ha	стилан	ощаяся	я веерь	іая стр	уя							
250		540	18	4,4	1,8	750	35	6,1	2,4	1,6	1000	62	8,2	3,3	2,2	1600	158	5,2	3,5
315	0	930	21	6,0	2,4	1200	35	7,8	3,1	2,1	1600	62	10	4,1	2,8	2300	129	5,9	4,0
355	U	1100	18	6,3	2,5	1450	32	8,3	3,3	2,2	1900	55	11	4,4	2,9	2800	119	6,4	4,3
400		1350	17	6,9	2,8	1800	31	9,2	3,7	2,5	2500	59	13	5,1	3,4	3800	137	7,8	5,2
							Bep	тикалі	ьная ко	оничес	кая стр	оуя							
250	-7	470	15	7,4	2,9	640	28	10	4,0	2,7	850	49	13	5,3	3,6	1300	114	8,2	5,4
315	-10	830	18	10	4,1	1100	32	14	5,5	3,6	1500	60	19	7,5	5,0	2100	117	10	7,0
355	-10	1050	19	12	4,8	1400	32	15	6,2	4,1	1780	52	20	7,9	5,2	2500	103	11	7,4
400	-13	1050	16	14	5,8	1500	33	21	8,2	5,5	2050	62	29	11	7,5	3200	152	18	12

Данные для подбора диффузоров ДКУ при удалении воздуха

Характеристики диффузоров ДКУ аналогичны характеристикам диффузоров 2ДКФ при N=0 (см. стр. 428).

^{*} N — количество оборотов центральной вставки, вращение осуществляется из положения заподлицо с корпусом. Знак «—» указывает на поворот по часовой стрелке, знак «+» — против часовой стрелки.

2ΔΚΦ 1ΔΚΦ

 $\emptyset C_1$

Воздухораспределительные устройства

Δ иффузоры конические 1 Δ КФ, 2 Δ КФ

Конические диффузоры ДКФ предназначены для подачи (1ДКФ и 2ДКФ) и удаления (2ДКФ) воздуха системами вентиляции и кондиционирования в изотермическом и неизотермическом режимах (нагрев и охлаждение) из верхней зоны помещения.

Конические диффузоры состоят из корпуса с подводящим патрубком и неподвижной центральной вставки, выполненной в виде набора конических колец.

Конструкция диффузоров 1ДКФ создает вертикальную коническую струю, у 2ДКФ образуется горизонтальная веерная струя.

Их рекомендуется применять для подачи и удаления воздуха в общественных и производственных помещениях больших размеров (торговые комплексы, производственные цеха, вокзалы, ангары и т.п.).

Диффузоры устанавливаются на отводах круглых воздуховодов при открытой прокладке воздуховодов или встраиваются в подвесные потолки. Монтаж к воздуховоду осуществляется с помощью самонарезающих винтов. Герметичность соединения с подводящим воздуховодом обеспечивается резиновым уплотнением.

Диффузоры изготавливаются из стали и окрашиваются методом порошкового напыления в белый цвет (RAL 9016). При изготовлении на заказ возможна окраска диффузоров в любой цвет по каталогу RAL.

Характеристики диффузоров 1ДКФ, 2ДКФ

Модель	F ₀ , M ²	Ø A, мм	В, мм	ØC, мм	ØC₁, мм	Н ₁ , мм	Вес, кг
1ДКФ 250	0,049	249	10	572	525	174	3,1
2ДКФ 250	0,049	249	0	572	525	174	3,1
1ДКФ 315	0,078	314	15	633	591	174	4,1
2ДКФ 315	0,078	314	0	633	591	174	4,1
1ДКФ 355	0,099	354	15	660	619	176	4,4
2ДКФ 355	0,099	354	0	660	619	176	4,4
1ДКФ 400	0,125	399	20	700	658	176	4,7
2ДКФ 400	0,125	399	0	700	658	176	4,7

Данные для подбора диффузоров 1ДКФ, 2ДКФ при подаче воздуха

		$L_{wA} = 2$	5 дБ(А)			L_{wA}	= 35 дЕ	(A)			L_{wA}	=45 дЕ	5(A)			$L_{wA} = 60$	дБ(A)	
Размер, ∅А, мм	L ₀ , м ³ /ч	∆Р _{полн} , Па	Дал бойно при V		L ₀ , м ³ /ч	∆Р _{полн} , Па	бо	Д ально йность ои V _x , м	, м	L ₀ , м ³ /ч	∆Р _{полн} , Па	бо	Дально йность ои V _x , м	, м	L ₀ ,	∆Р _{полн} , Па	бойно	ьно- ость, м / _x , м/с
			0,2	0,5			0,2	0,5	0,75			0,2	0,5	0,75			0,5	0,75
						1ДКФ. Вертикальная коническая струя												
250	470	15	7,4	2,9	640	28	10	4,0	2,7	850	49	13	5,3	3,6	1300	114	8,2	5,4
315	830	18	10	4,1	1100	32	14	5,5	3,6	1500	60	19	7,5	5,0	2100	117	10	7,0
355	1050	19	12	4,8	1400	32	15	6,2	4,1	1780	52	20	7,9	5,2	2500	103	11	7,4
400	1050	16	14	5,8	1500	33	21	8,2	5,5	2050	62	28	11	7,5	3200	152	18	12
						2ДК	Ф. Нас	тилаю	щаяся	веерна	я струя	ı						
250	540	18	4,4	1,8	750	35	6,1	2,4	1,6	1000	62	8,2	3,3	2,2	1600	158	5,2	3,5
315	930	21	6,0	2,4	1200	35	7,8	3,1	2,1	1600	62	10	4,1	2,8	2300	129	5,9	4,0
355	1100	18	6,3	2,5	1450	32	8,3	3,3	2,2	1900	55	11	4,4	2,9	2800	119	6,4	4,3
400	1350	17	6,9	2,8	1800	31	9,2	3,7	2,5	2500	59	13	5,1	3,4	3800	137	7,8	5,2

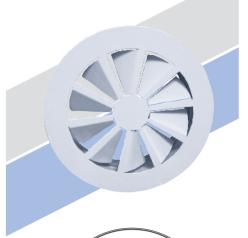
Данные для подбора диффузоров 2ДКФ при удалении воздуха

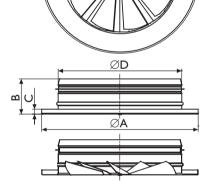
Размер,	L _{wA} = 2!	5 дБ(А)	$L_{wA} = 35$	5 дБ(А)	$L_{wA} = 4$	5 дБ (А)	$L_{wA} = 60$) дБ (А)
Ø A, mm	L ₀ , м ³ /ч	ΔР полн, Па	L ₀ , м ³ /ч	ΔР полн, Па	L ₀ , м ³ /ч	$\Delta P_{\text{полн,}}$ Па	L ₀ , м ³ /ч	$\Delta P_{\text{полн}}$, Па
250	600	8	980	22	1550	56	2100	102
315	1700	26	2200	44	2700	67	3300	99
355	1 <i>7</i> 10	17	2200	27	2800	44	4100	95
400	2000	14	2700	26	3600	46	5400	104

Диффузоры 1ДКЗ, 2ДКЗ

Диффузоры 1ДКЗ, 2ДКЗ предназначены для подачи воздуха системами вентиляции и кондиционирования в изотермическом и неизотермическом режимах (нагрева и охлаждения) закрученными струями из верхней зоны помешений:

- вертикальной закрученной конической струей для 1ДКЗ;
- горизонтальной настилающейся закрученной струей для 2ДK3.


Вихревой режим течения приточного воздуха на выходе из диффузора позволяет повысить коэффициент эжекции окружающего воздуха к приточной струе по сравнению с прямоточными струями и, как следствие, увеличить интенсивность снижения скорости и выравнивания температуры в струе с температурой помещения. Диффузоры 1ДКЗ, 2ДКЗ рекомендуется применять в помещениях, где требуется повышенная кратность воздухообмена и избыточная температура приточного воздуха $\Delta t_0 \gg 5^{\circ} C$ (концертные и торговые залы, спортивные сооружения, вокзалы, аэропорты, производственные помещения и т.д.). Также диффузоры 1ДКЗ, 2ДКЗ можно использовать и для удаления воздуха из помещений.


Диффузоры 1ДКЗ, 2ДКЗ устанавливаются на отводах круглых воздуховодов при открытой прокладке воздуховодов или встраиваются в подвесные потолки, при этом обеспечивается настилание горизонтальной струи на потолок. Монтаж к воздуховоду осуществляется с помощью самонарезающих винтов. Герметичность соединения с подводящим воздуховодом обеспечивается резиновым уплотнением.

Диффузоры изготавливаются из стали и окрашивается методом порошкового напыления в белый цвет (RAL 9016). При изготовлении на заказ возможна окраска диффузоров в любой цвет по каталогу RAL.

Характеристики диффузоров 1ДКЗ, 2ДКЗ

Модель	F ₀ , M ²	Ø A, mm	В, мм	С, мм	Ø D, мм	Вес, кг
1ДКЗ 315	0,042	315	90	12	249	1,2
2ДКЗ 315	0,042	315	90	12	249	1,2
1ДКЗ 450	0,114	450	90	12	399	2,1
2ДКЗ 450	0,114	450	90	12	399	2,1
1ДКЗ 595	0,181	595	90	12	499	3,3
2ДКЗ 595	0,181	595	90	12	499	3,3

Данные для подбора диффузоров 1ДКЗ при подаче воздуха вертикальной закрученной конической струей

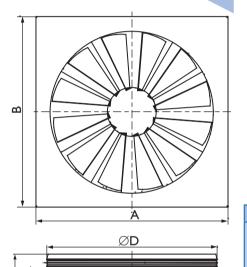
		L _{wA} =	= 25 д	Б(А)			L _{wA} =	=35 д	Б(А)			L _{wA} =	=45 д∣	Б(А)			L _{wA} =	=60 д	Б(А)	
Размер, ∅А, мм	L ₀ , м ³ /ч	ΔР _{полн} , Па	бой	Дально йность и V _x , л	, M	L ₀ ,	∆Р _{полн} , Па	бой	цальной иосты и V _x , л	, M	L ₀ ,	∆Р _{полн} , Па	бой	цально іность и V _x , л	, м	L ₀ ,	∆Р _{полн} , Па	бой	\ально йность и V _x , л	, M
	741 / 1		0,2	0,5	0,75	, VI. / I		0,2	0,5	0,75	W 7 1	114	0,2	0,5	0,75	W / 1	114	0,2	0,5	0,75
315	210	11	4,3	1,7	1,1	300	23	6,1	2,4	1,6	430	46	8,7	3,5	2,3	750	141	15	6,1	4,1
450	600	14	7,4	3,0	2,0	840	27	10	4,2	2,8	1160	51	14	5,7	3,8	1900	138	23	9,4	6,3
595	930	14	9,1	3,7	2,4	1250	24	12	4,9	3,3	1700	45	17	6,7	4,4	2650	110	26	10	6,9

Данные для подбора диффузоров 2ДКЗ при подаче воздуха горизонтальной настилающейся закрученной струей

		L _{wA} =	=25 д	Б(А)			L _{wA} =	=35 д	Б(А)			L _{wA} =	=50 дІ	Б(А)			L _{wA} =	=60 д	Б(А)	
азмер, ØA, мм	L ₀ , м ³ /ч	ΔР _{полн} , Па	бой	λ альнойность V_x , л	, м	L ₀ , м ³ /ч	∆Р _{полн} , Па	бой	цальной иосты и V _x , л	, М	L ₀ , м ³ /ч	∆Р _{полн} , Па	бой	цально іность и V _x , л	, м	L ₀ ,	∆Р _{полн} , Па	бой	ально іность и V _x , <i>n</i>	, м
	/VL / -1	ıια	0,2	0,5	0,75	/VL / -1	Ha	0,2	0,5	0,75	/VL / -1	Ha	0,2	0,5	0,75	/VL / -1	ıια	0,2	0,5	0,75
315	70	9	0,7	0,3	0,2	120	28	1,2	0,5	0,3	260	130	2,6	1,1	0,7	450	390	4,6	1,8	1,2
450	130	3	0,8	0,3	0,2	230	9	1,4	0,6	0,4	580	59	3,6	1,4	1,0	1100	213	6,8	2,7	1,8
595	170	2	0,8	0,3	0,2	320	7	1,6	0,6	0,4	800	46	3,9	1,6	1,0	1500	163	7,3	2,9	2,0

Воздухораспределительные

устройства


Диффузоры 1ДПЗ, 2ДПЗ предназначены для подачи воздуха системами вентиляции и кондиционирования в изотермическом и неизотермическом режимах (нагрева и охлаждения) закрученными струями из верхней зоны помещений:

- вертикальной закрученной конической струей для 1ДПЗ:
- горизонтальной настилающейся закрученной струей для 2ДПЗ.

Вихревой режим течения приточного воздуха на выходе из диффузора позволяет повысить коэффициент эжекции окружающего воздуха к приточной струе по сравнению с прямоточными струями и, как следствие, увеличить интенсивность снижения скорости и выравнивания температуры в струе с температурой помещения. Диффузоры 1ДПЗ, 2ДПЗ рекомендуется применять в помещениях, где требуется повышенная кратность воздухообмена и избыточная температура приточного воздуха $\Delta t_0 \gg 5^{\circ} C$ (концертные и торговые залы, спортивные сооружения, вокзалы, аэропорты, производственные помещения и т.д.). Также диффузоры 1ДПЗ, 2ДПЗ можно использовать и для удаления воздуха из помещений.

Диффузоры 1ДПЗ, 2ДПЗ устанавливаются на отводах круглых воздуховодов при открытой прокладке воздуховодов или встраиваются в подвесные потолки, при этом обеспечивается настилание горизонтальной струи на потолок. Монтаж к воздуховоду осуществляется с помощью самонарезающих винтов. Герметичность соединения с подводящим воздуховодом обеспечивается резиновым уплотнением.

Диффузоры изготавливаются из стали и окрашивается методом порошкового напыления в белый цвет (RAL 9016). При изготовлении на заказ возможна окраска диффузоров в любой цвет по каталогу RAL.

Характеристики диффузоров 1ДПЗ, 2ДПЗ

Модель	F_0 , M^2	А, мм	В, мм	С, мм	ØD, мм	E, MM	Вес, кг
1ДПЗ 300×300	0,042	300	300	7	249	90	1,3
2ДПЗ 300×300	0,042	300	300	7	249	90	1,3
1ДПЗ 450×450	0,114	450	450	7	399	90	2,5
2ДПЗ 450×450	0,114	450	450	7	399	90	2,5
1ДПЗ 595×595	0,181	595	595	7	499	90	3,9
2ДПЗ 595×595	0,181	595	595	7	499	90	3,9

Данные для подбора диффузоров 1ДПЗ при подаче воздуха вертикальной закрученной конической струей

		L _{wA} =	=25 д	Б(А)			L _{wA} =	=35 д	Б(А)			L _{wA} =	=45 дІ	Б(А)			L _{wA} =	=60 д	Б(А)	
Размер, А×В, мм	L ₀ , м ³ /ч	∆Р _{полн} , Па	боі	Дально йность и V _x , <i>п</i>	, M	L ₀ ,	∆Р _{полн} , Па	бой	цально іность и V _x , л	, M	L ₀ ,	∆Р _{полн} , Па	бой	цально іность и V _x , л	, M	L ₀ ,	∆Р _{полн} , Па	бой	цально іность и V _x , л	ь, M
	W 7-1	Ha	0,2	0,5	0,75	Wt / -I	Πα	0,2	0,5	0,75	Wt / -1	Ha	0,2	0,5	0,75	/VL / -1	Ha	0,2	0,5	0,75
300×300	210	11	4,3	1,7	1,1	300	23	6,1	2,4	1,6	430	46	8,7	3,5	2,3	750	141	15	6,1	4,1
450×450	600	14	7,4	3,0	2,0	840	27	10	4,2	2,8	1160	51	14	5,7	3,8	1900	138	23	9,4	6,3
595×595	930	14	9,1	3,7	2,4	1250	24	12	4,9	3,3	1700	45	17	6,7	4,4	2650	110	26	10	6,9

Данные для подбора диффузоров 2ДПЗ при подаче воздуха горизонтальной настилающейся закрученной струей

			L _{wA} =	=25 д	Б(А)			L _{wA} =	=35 д	Б(А)			L _{wA} =	=50 д	Б(А)			L _{wA} =	=60 д	Б(A)	
	Размер, А×В, мм	L ₀ , м ³ /ч	∆Р _{полн} , Па	бой	Дально йность и V _x , л	, M	L ₀ , м ³ /ч	∆Р _{полн} , Па	бой	Дально іность и V _x , л	, м	L ₀ , м ³ /ч	∆Р _{полн} , Па	бой	цально іность и V _x , л	, м	L ₀ ,	∆Р _{полн} , Па	бой	кально іность и V _x , л	, M
		Wt / -1	Ha	0,2	0,5	0,75	Wt / -1	Ha	0,2	0,5	0,75	/41 / -1	Ha	0,2	0,5	0,75	/VL / -1	Πα	0,2	0,5	0,75
ſ	300×300	70	9	0,7	0,3	0,2	120	28	1,2	0,5	0,3	260	130	2,6	1,1	0,7	450	390	4,6	1,8	1,2
ı	450×450	130	3	0,8	0,3	0,2	230	9	1,4	0,6	0,4	580	59	3,6	1,4	1,0	1100	213	6,8	2,7	1,8
L	595×595	170	2	0,8	0,3	0,2	320	7	1,6	0,6	0,4	800	46	3,9	1,6	1,0	1500	163	7,3	2,9	2,0

Диффузоры 1DLKA, 2DLKA

Потолочные диффузоры 1DLKA/2DLKA предназначены для подачи воздуха системами вентиляции и кондиционирования в помещениях общественного и производственного назначения горизонтальными воздушными струями с различной дальнобойностью.

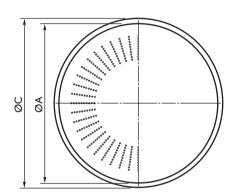
Диффузор DLKA представляет собой корпус с подводящим патрубком, к которому крепится лицевая панель, выполненная в виде перфорированного (1DLKA) или сплошного (2DLKA) диска. Конструкция диффузоров DLKA предусматривает возможность изменения высоты воздуховыпускной щели между корпусом и лицевой панелью, которая составляет 20 мм или 35 мм.

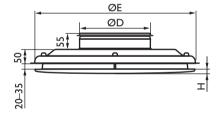
Диффузоры могут оснащаться камерой статического давления PLR со встроенными регулятором расхода воздуха и звукопоглощающими пластинами. Камера статического давления снабжена штуцерами для измерения перепада давления и специальным устройством для настройки положения регулятора расхода воздуха. Применение камеры статического давления улучшает аэродинамические и акустические характеристики диффузора, а также значительно облегчает процесс наладки вентиляционной системы.

Монтаж диффузоров осуществляется с помощью присоединительного патрубка, который крепится к воздуховоду или патрубку камеры статического давления саморезами или заклепками.

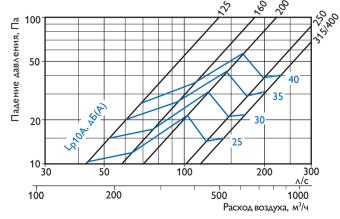
Диффузоры изготавливаются из стали и окрашиваются методом порошкового напыления в белый цвет (RAL 9010).

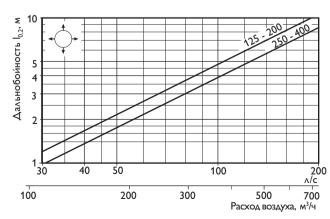
Варианты исполнения лицевой панели




Характеристики диффузоров 1DLKA, 2DLKA

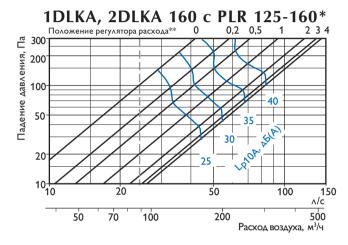
Модель	Ø A, mm	ØC, mm	Ø D, мм	Ø E, mm	Н, мм	Вес, кг
1(2)DLKA 125	363	395	124	370	12	1,6
1(2)DLKA 160	363	395	159	370	12	1,6
1(2)DLKA 200	363	395	199	370	12	1,6
1(2)DLKA 250	563	595	249	570	16	3,4
1(2)DLKA 315	563	595	314	570	16	3,3
1(2)DLKA 400	563	595	399	570	16	3,4

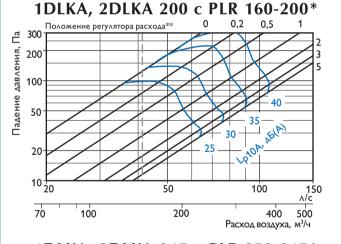

_ POLAR BEAR

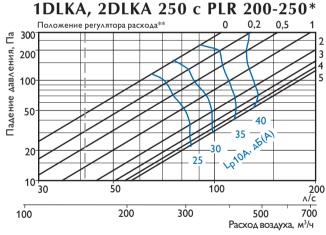


1DLKA, 2DLKA*

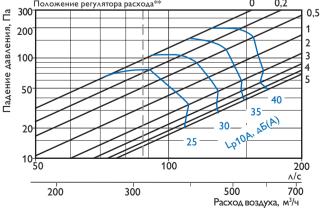
^{*} Аэродинамические и аккустические характеристики диффузоров приведены для воздуховыпускной щели высотой 20 мм.


Характеристики диффузоров 1(2)DLKA с камерами статического давления PLR


Модель	ØD₁, MM	ØD₂, мм	H ₂ ,	L, mm	В,	К, мм	G _{min} ,	G _{max} ,	Bec, кг
1(2)DLKA 125 c PLR 100-125	125	99	170	320	320	120	270	300	3,7
1(2)DLKA 160 c PLR 125-160	160	124	170	470	320	140	270	300	4,6
1(2)DLKA 200 c PLR 160-200	200	159	205	500	440	170	305	335	5,6
1(2)DLKA 250 c PLR 200-250	250	199	245	650	480	195	345	375	8,9
1(2)DLKA 315 c PLR 250-315	315	249	295	700	570	225	395	425	10,2
1(2)DLKA 400 c PLR 315-400	400	314	360	700	570	225	460	490	11,4



Камера статического давления PLR (опция).
 Подробнее смотрите стр. 452.


1DLKA, 2DLKA 125 с PLR 100-125* Положение регулятора расхода** 0 0,2 0,5 1 200 100 200 300 Расход воздуха, м³/ч

- * Аэродинамические и аккустические характеристики диффузоров приведены для воздуховыпускной щели высотой 20 мм.
- ** Положение регулятора расхода камеры статического давления PLR; максимальное значение соответствует полностью открытому клапану.
- Минимальный расход, обеспечивающий необходимое для его измерения давление.

Шумовые характеристики

Октавный уровень звуковой мощности и корректированный уровень звуковой мощности определяются по формулам:

 $L_{\text{wokt}} = L_{\text{p10A}} + K_{\text{okt}}$

 $L_{wA} = L_{p10A} + 4$

где: L_{wort} , дБ — октавный уровень звуковой мощности;

 L_{p10A} , дБ(A) — уровень звука (корректированный уровень звукового давления для помещения с эквивалентной площадью звукопоглощения 10 m^2) определяется по диаграмме;

Кокт – поправочный коэффициент;

 L_{wA} , дE(A) — корректированный уровень звуковой мощности.

Maran			Попра	авочный коэ	ффициент К	окт, ДБ		
Модель	63	125	250	500	1000	2000	4000	8000
1(2)DLKA 125	10	2	2	3	-1	-10	-14	-8
1(2)DLKA 160	19	8	4	2	-3	-11	-14	-8
1(2)DLKA 200	7	7	5	2	-2	-10	-14	-8
1(2)DLKA 250	14	7	4	3	-2	-11	-14	-8
1(2)DLKA 315	15	10	3	3	-3	-10	-14	-8
1(2)DLKA 400	15	10	5	3	-4	-15	-14	-8
1(2)DLKA 125 c PLR 100-125	10	9	5	2	-5	-11	-11	-7
1(2)DLKA 160 c PLR 125-160	15	9	5	2	-4	-10	-12	-7
1(2)DLKA 200 c PLR 160-200	10	10	3	0	-4	-8	-11	-7
1(2)DLKA 250 c PLR 200-250	14	10	3	2	-4	-11	-12	-8
1(2)DLKA 315 c PLR 250-315	5	8	3	3	-4	-10	-12	-8
1(2)DLKA 400 c PLR 315-400	7	9	4	3	-4	-12	-13	-8

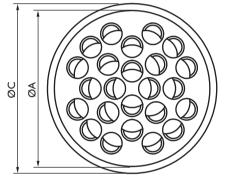
Снижение шума

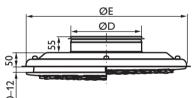
Модель				Снижение і	шума ∆L, дБ			
модель	63	125	250	500	1000	2000	4000	8000
1(2)DLKA 125	18	14	7	3	3	2	4	4
1(2)DLKA 160	18	13	6	2	3	3	4	4
1(2)DLKA 200	15	11	5	3	4	3	4	5
1(2)DLKA 250	14	9	3	4	3	5	6	5
1(2)DLKA 315	12	7	3	3	3	5	6	6
1(2)DLKA 400	11	6	3	1	3	4	6	6
1(2)DLKA 125 c PLR 100-125	23	16	13	16	20	16	16	17
1(2)DLKA 160 c PLR 125-160	20	10	9	17	15	16	15	17
1(2)DLKA 200 c PLR 160-200	19	11	10	17	16	13	16	16
1(2)DLKA 250 c PLR 200-250	13	7	9	13	13	14	15	15
1(2)DLKA 315 c PLR 250-315	11	6	8	12	12	12	14	15
1(2)DLKA 400 c PLR 315-400	8	4	7	9	10	11	13	12

POLAR

Воздухораспределительные

устройства

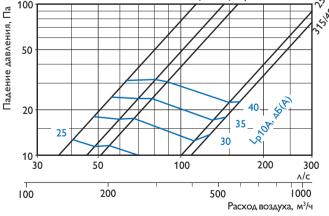

Диффузоры 1DLKE

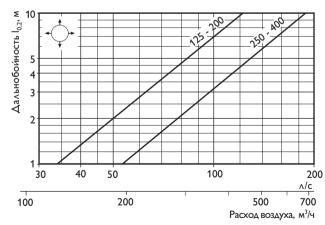

Потолочные диффузоры 1DLKE предназначены для подачи воздуха системами вентиляции и кондиционирования в помещениях общественного и производственного назначения закрученными струями из верхней зоны помещений.

Диффузор 1DLKE представляет собой корпус с подводящим патрубком, к которому крепится круглая лицевая панель с размещенными на ней подвижными воздухораздающими ячейками. Конструкция диффузоров 1DLKE предусматривает два положения лицевой панели: с воздуховыпускной щелью высотой 12 мм по периметру изделия и без неё. Диффузоры могут оснащаться камерой статического давления PLR со встроенными регулятором расхода воздуха и звукопоглощающими пластинами. Камера статического давления снабжена штуцерами для измерения перепада давления и специальным устройством для настройки положения регулятора расхода воздуха. Применение камеры статического давления улучшает аэродинамические и акустические характеристики диффузора, а также значительно облегчает процесс наладки вентиляционной системы.

Монтаж диффузоров осуществляется с помощью присоединительного патрубка, который крепится к воздуховоду или патрубку камеры статического давления саморезами или заклепками.

Диффузоры изготавливаются из стали и окрашиваются методом порошкового напыления в белый цвет (RAL 9010).





Характеристики диффузоров 1DLKE

Модель	Ø A, mm	ØС, мм	Ø D , мм	Ø E, мм	Вес, кг
1DLKE 125	363	395	124	370	1,4
1DLKE 160	363	395	159	370	1,4
1DLKE 200	363	395	199	370	1,4
1DLKE 250	563	595	249	570	3,0
1DLKE 315	563	595	314	570	2,9
1DLKE 400	563	595	399	570	3,0

1DLKE*

^{*} Аэродинамические и аккустические характеристики диффузоров приведены для закрытой воздуховыпускной щели.

Характеристи	ØD.	$\emptyset D_2$,	H ₂ ,	L,	В,	K,	C .	G _{max} ,	Bec,	L 80 B
Модель	MM	MM	MM	L, MM	MM	MM	G _{min} ,	MM	вес, кг	K B/2 12
DLKE 125 c PLR 100-125	125	99	170	320	320	120	270	300	3,5	1 g - ()- -
DLKE 160 c PLR 125-160	160	124	170	470	320	140	270	300	4,4	
DLKE 200 c PLR 160-200	200	159	205	500	440	170	305	335	5,4	$g_1 \longrightarrow g_2 \longrightarrow$
DLKE 250 c PLR 200-250 DLKE 315 c PLR 250-315	250 315	199 249	245 295	650 700	480 570	195 225	345 395	375 425	8,5 9,8	
DLKE 400 c PLR 315-400		314	360	700	570	225	460	490	11,0	–Камера статического давления PLR (опция).Подробнее смотрите стр. 452.
1DLKE 12.	5 c l	PLR	100	-12	5 *					1DLKE 160 c PLR 125-160*
Положение регулятора рас			0,			1 2		а 3	00 Πο δ	ложение регулятора расхода** 0 0,2 0,5 1
200	\angle		\times	\times	\times	$\frac{3}{4}$		Ĕ	00	
200		\times	\rightarrow					e H Z	$^{\circ\circ}\vdash$	
100	\times				40	\blacksquare		1 dBA	00 ⊨	
				35	40			Ž Ž		40
50	//		/ 3	0	- (A) -			аден	50	35
			25	V6JOV.	Ab	\vdash		Ë		25 30 35 BUP
20	//		+	18/0		\Box			20	25 NOF
10 10 20				50		80 _{^/c}			10 _ 10	20 50 10
50	10	00		20	00	300)		_	50 100 200 300
1DLKE 20	0 c l	PIR		Расход I -20 (•	, м³/ч				Расход воздуха, м ³ /ч 1DLKE 250 с PLR 200-250*
Положение регулятора рас			0	0,2	0,5	1		3	Пол 100	ложение регулятора расхода** 0 0,2 0,5
						$\frac{2}{3}$		Ë		
200		$\langle \cdot \rangle$	\times	X_{\perp}	_	// 5		ВНИЯ	00	
100	$\langle \cdot \rangle$	$X_{\mathcal{I}}$			///			aBA6	00	
	\nearrow							Падение давления, 1 5		
50	4			40				Ден	50	40
	/		30	5 A6	M—			□		35 35 LPNON, LECEN
20	//	25 -	30	OA, Ab	-				20	30
		Ť	+ 🗸	22						25 4810
10	50			10	0	 150)		10 	40 50 100 200
80 100	2	200		1	1	۸/c 500		10	00	200 500 700
4DU/F 24	1	nı n		Расход		, M³/4				Расход воздуха, м³/ч
1DLKE 31.	5 С I хода**	PLK	250	0-31	5 *	0,2			Пол	1DLKE 400 с PLR 315-400* ложение регулятора расхода**
300					$\overline{}$	7),5	3	⁰⁰ =	The second secon
				>	/] :))	έ 2	00	
200			$\overline{}$			14	-	ō	- 1	
100						<u> </u>	3	≨ 1	00	
100							} - -	1 daBA	00	
200						34		тение даву	50	
100-				35	40 40 0A Ab	3445	,	ие д	E	35_ KE(A)

Расход воздуха, м³/ч

200 _{^/c}

700

500

25 100

Расход воздуха, м3/ч

100

200

^{*} Аэродинамические и аккустические характеристики диффузоров приведены для закрытой воздуховыпускной щели.

^{**} Положение регулятора расхода камеры статического давления PLR; максимальное значение соответствует полностью открытому клапану.

Минимальный расход, обеспечивающий необходимое для его измерения давление.

Шумовые характеристики

Октавный уровень звуковой мощности и корректированный уровень звуковой мощности определяются по формулам:

 $L_{\text{wokt}} = L_{\text{p10A}} + K_{\text{okt}}$

 $L_{wA} = L_{p10A} + 4$

где: L_{wort} , дБ – октавный уровень звуковой мощности;

 L_{p10A} , дБ(A) — уровень звука (корректированный уровень звукового давления для помещения с эквивалентной площадью звукопоглощения 10 m^2) определяется по диаграмме;

Кокт – поправочный коэффициент;

 L_{wA} , дB(A) — корректированный уровень звуковой мощности.

Модель			Попр	авочный коэ	ффициент К	окт, дБ		
Модель	63	125	250	500	1000	2000	4000	8000
1DLKE 125	13	-1	0	2	0	-7	-13	-8
1DLKE 160	8	1	2	1	0	-7	-13	-8
1DLKE 200	12	3	3	2	-1	-7	-13	-8
1DLKE 250	12	4	3	2	0	-10	-14	-8
1DLKE 315	15	5	3	2	0	-9	-14	-8
1DLKE 400	9	2	5	2	-2	-12	-14	-8
1DLKE 125 c PLR 100-125	14	9	5	1	-3	-8	-10	-7
1DLKE 160 c PLR 125-160	14	9	6	0	-3	-9	-12	-7
1DLKE 200 c PLR 160-200	11	10	4	-1	-1	-6	-11	-7
1DLKE 250 c PLR 200-250	14	10	4	0	-2	-9	-11	-8
1DLKE 315 c PLR 250-315	5	9	2	1	-1	-8	-12	-8
1DLKE 400 c PLR 315-400	8	9	3	2	-1	-11	-13	-8

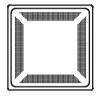
Снижение шума

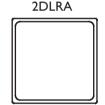
Модель				Снижение ц	шума ∆L, дБ			
Модель	63	125	250	500	1000	2000	4000	8000
1DLKE 125	21	16	9	1	3	8	10	16
1DLKE 160	19	12	7	1	1	2	2	3
1DLKE 200	15	11	5	1	1	2	3	4
1DLKE 250	13	8	3	1	2	2	2	3
1DLKE 315	8	7	0	-2	-4	0	1	1
1DLKE 400	10	6	2	-1	1	3	3	5
1DLKE 125 c PLR 100-125	22	16	12	18	20	17	15	18
1DLKE 160 c PLR 125-160	20	10	8	17	13	15	14	15
1DLKE 200 c PLR 160-200	16	11	10	17	13	13	14	15
1DLKE 250 c PLR 200-250	13	7	8	13	13	12	11	14
1DLKE 315 c PLR 250-315	11	6	7	11	12	10	10	12
1DLKE 400 c PLR 315-400	8	4	6	7	9	9	10	11

Диффузоры 1DLRA, 2DLRA

Потолочные диффузоры 1DLRA/2DLRA предназначены для подачи воздуха системами вентиляции и кондиционирования в помещениях общественного и производственного назначения горизонтальными воздушными струями с различной дальнобойностью.

Диффузор DLRA представляет собой корпус с подводящим патрубком, к которому крепится квадратная перфорированная (1DLRA) или сплошная (2DLRA) лицевая панель. Конструкция диффузоров DLRA предусматривает возможность изменения высоты воздуховыпускной щели между корпусом и лицевой панелью, которая составляет 20 мм или 35 мм.

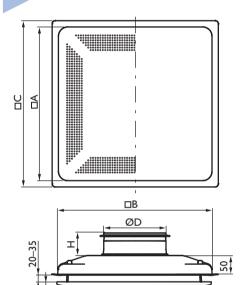

Диффузоры могут оснащаться камерой статического давления PLR со встроенными регулятором расхода воздуха и звукопоглощающими пластинами. Камера статического давления снабжена штуцерами для измерения перепада давления и специальным устройством для настройки положения регулятора расхода воздуха. Применение камеры статического давления улучшает аэродинамические и акустические характеристики диффузора, а также значительно облегчает процесс наладки вентиляционной системы.


Монтаж диффузоров осуществляется с помощью присоединительного патрубка, который крепится к воздуховоду или патрубку камеры статического давления саморезами или заклепками.

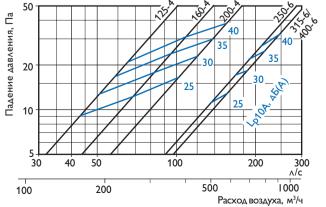
Диффузоры изготавливаются из стали и окрашиваются методом порошкового напыления в белый цвет (RAL 9010).

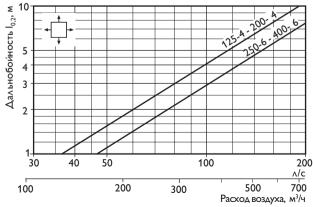
Варианты исполнения лицевой панели

1DLRA

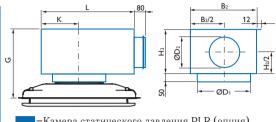


Характеристики диффузоров 1DLRA, 2DLRA

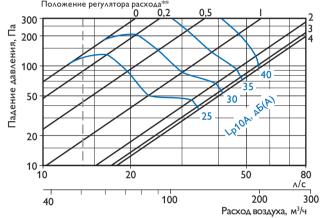

Модель	□А, мм	□В, мм	□С, мм	Ø D, мм	Н, мм	Вес, кг
1(2)DLRA 125-4	395	399	425	124	58	2,4
1(2)DLRA 160-4	395	399	425	159	58	2,4
1(2)DLRA 200-4	395	399	425	199	58	2,3
1(2)DLRA 250-6	565	569	595	249	58	4,4
1(2)DLRA 315-6	565	569	595	314	58	4,3
1(2)DLRA 400-6	565	569	595	399	66	4,3


_ POLAR BEAR

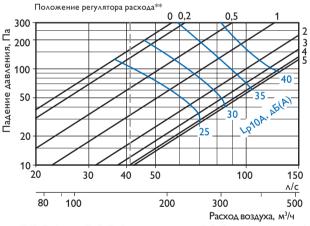
1DLRA, 2DLRA*



^{*}Аэродинамические и аккустические характеристики диффузоров приведены для воздуховыпускной щели высотой 20 мм.

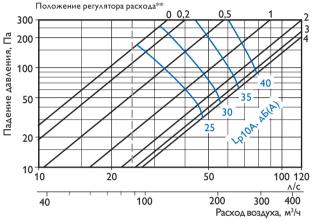

Характеристики диффузоров 1(2)DLRA с камерами статического давления PLR

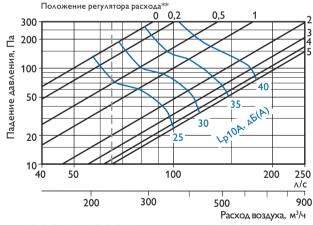
Модель	ØD ₁ ,	$\emptyset D_2$,	H ₂ ,	L,	B ₂ ,	K,	G _{min} ,	G _{max} ,	Bec,
Модель	мм	мм	MM	мм	ММ	ММ	мм	мм	ΚΓ
1(2)DLRA 125-4 c PLR 100-125	125	99	170	320	320	120	275	305	4,5
1(2)DLRA 160-4 c PLR 125-160	160	124	170	470	320	140	275	305	5,4
1(2)DLRA 200-4 c PLR 160-200	200	159	205	500	440	170	310	340	6,3
1(2)DLRA 250-6 c PLR 200-250	250	199	245	650	480	195	350	380	9,9
1(2)DLRA 315-6 c PLR 250-315	315	249	295	700	570	225	400	430	11,2
1(2)DLRA 400-6 c PLR 315-400	400	314	360	700	570	225	470	500	12,3



Камера статического давления PLR (опция).
 Подробнее смотрите стр. 452.

1DLRA, 2DLRA 125-4 c PLR 100-125*


1DLRA, 2DLRA 200-4 c PLR 160-200*


1DLRA, 2DLRA 315-6 c PLR 250-315*


1DLRA, 2DLRA 160-4 c PLR 125-160*

1DLRA, 2DLRA 250-6 c PLR 200-250*

1DLRA, 2DLRA 400-6 c PLR 315-400*

- * Аэродинамические и аккустические характеристики диффузоров приведены для воздуховыпускной щели высотой 20 мм.
- ** Положение регулятора расхода камеры статического давления PLR; максимальное значение соответствует полностью открытому клапану.

Минимальный расход, обеспечивающий необходимое для его измерения давление.

Шумовые характеристики

Октавный уровень звуковой мощности и корректированный уровень звуковой мощности определяются по формулам:

 $L_{\text{wort}} = L_{\text{p10A}} + K_{\text{ort}}$

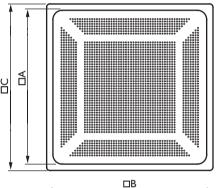
 $L_{wA} = L_{p10A} + 4$

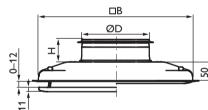
где: L_{wokt}, дБ – октавный уровень звуковой мощности;

 L_{p10A} , дБ(A) — уровень звука (корректированный уровень звукового давления для помещения с эквивалентной площадью звукопоглощения 10 m^2) определяется по диаграмме;

Кокт – поправочный коэффициент;

 L_{wA} , дB(A) — корректированный уровень звуковой мощности.


Модель			Попра	авочный коэ	ффициент К	окт, дБ	_{ст} , дБ			
МОДЕЛЬ	63	125	250	500	1000	2000	4000	8000		
1(2)DLRA 125-4	9	-1	1	4	-2	-12	-13	-8		
1(2)DLRA 160-4	10	6	4	3	-1	-11	-14	-8		
1(2)DLRA 200-4	9	5	4	2	0	-11	-15	-8		
1(2)DLRA 250-6	14	9	4	3	-3	-11	-14	-8		
1(2)DLRA 315-6	10	5	4	4	-2	-13	-15	-8		
1(2)DLRA 400-6	8	3	5	3	-2	-14	-14	-8		
1(2)DLRA 125-4 c PLR 100-125	12	12	3	2	-6	-8	-10	-7		
1(2)DLRA 160-4 c PLR 125-160	12	7	5	2	-5	-9	-10	-7		
1(2)DLRA 200-4 c PLR 160-200	4	10	3	2	-4	-8	-11	-7		
1(2)DLRA 250-6 c PLR 200-250	8	8	3	3	-4	-10	-12	-7		
1(2)DLRA 315-6 c PLR 250-315	15	10	1	-1	-5	-7	-9	-5		
1(2)DLRA 400-6 c PLR 315-400	13	9	3	1	-3	-8	-10	-6		


Снижение шума

Модель				Снижение ц	шума ∆L, дБ			
МОДЕЛЬ	63	125	250	500	1000	2000	4000	8000
1(2)DLRA 125-4	20	15	6	7	6	4	4	6
1(2)DLRA 160-4	18	11	5	6	6	2	4	6
1(2)DLRA 200-4	16	11	5	5	3	3	4	5
1(2)DLRA 250-6	14	7	3	3	2	3	5	5
1(2)DLRA 315-6	12	7	4	3	3	4	6	5
1(2)DLRA 400-6	11	7	4	1	3	3	5	6
1(2)DLRA 125-4 c PLR 100-125	19	10	10	16	23	15	17	16
1(2)DLRA 160-4 c PLR 125-160	18	10	8	17	18	17	13	17
1(2)DLRA 200-4 c PLR 160-200	14	7	8	18	15	11	15	16
1(2)DLRA 250-6 c PLR 200-250	12	7	9	12	12	11	16	17
1(2)DLRA 315-6 c PLR 250-315	9	6	8	12	13	12	15	18
1(2)DLRA 400-6 c PLR 315-400	8	5	9	10	13	13	15	16

POLAR

Воздухораспределительные

устройства

Диффузоры DLRH

Потолочные диффузоры DLRH предназначены для удаления воздуха системами вентиляции и кондиционирования из помещений общественного и производственного назначения.

Диффузор DLRH представляет собой корпус с подводящим патрубком, к которому крепится квадратная перфорированная лицевая панель. Конструкция диффузоров DLRH предусматривает два положения лицевой панели: с воздуховпускной щелью высотой 12 мм по периметру изделия и без неё.

Диффузоры могут оснащаться камерой статического давления PLR со встроенными регулятором расхода воздуха и звукопоглощающими пластинами. Камера статического давления снабжена штуцерами для измерения перепада давления и специальным устройством для настройки положения регулятора расхода воздуха. Применение камеры статического давления улучшает аэродинамические и акустические характеристики диффузора, а также значительно облегчает процесс наладки вентиляционной системы.

Монтаж диффузоров осуществляется с помощью присоединительного патрубка, который крепится к воздуховоду или патрубку КСД саморезами или заклепками.

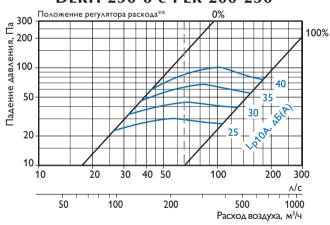
Диффузоры изготавливаются из стали и окрашиваются методом порошкового напыления в белый цвет (RAL 9010).

Характеристики диффузоров DLRH

Модель	□А, мм	□В, мм	□С, мм	Ø D , мм	Н, мм	Вес, кг
DLRH 160-4	395	399	425	159	58	2,2
DLRH 200-4	395	399	425	199	58	2,1
DLRH 250-6	565	569	595	249	58	4,2
DLRH 315-6	565	569	595	314	58	4,1
DLRH 400-6	565	569	595	399	66	4,1

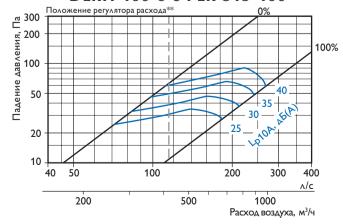
Характеристики диффузоров DLRH с камерами статического давления PLR


Модель	ØD ₁ ,	$\emptyset D_2$,	H ₂ ,	L,	B ₂ ,	K,	G _{min} ,	G _{max} ,	Bec,	
Модель	MM	мм	MM	ММ	MM	MM	ММ	мм	ΚΓ	
DLRH 160-4 c PLR 125-160	160	124	170	470	320	140	275	305	5,2	
DLRH 200-4 c PLR 160-200	200	159	205	500	440	170	310	340	6,1	ď
DLRH 250-6 c PLR 200-250	250	199	245	650	480	195	350	380	9,7	
DLRH 315-6 c PLR 250-315	315	249	295	700	570	225	400	430	11,0	
DLRH 400-6 c PLR 315-400	400	314	360	700	570	225	470	500	12,1	


DLRH 160-4 c PLR 125-160*

300 100% Падение давления, Па 200 100 50-25 20 10 10 20 30 40 50 100 150 Λ/c 100 200 500 50 Расход воздуха, м³/ч

DLRH 200-4 c PLR 160-200*


DLRH 250-6 c PLR 200-250*

DLRH 315-6 c PLR 250-315*

DLRH 400-6 c PLR 315-400*

- * Аэродинамические и аккустические характеристики диффузоров приведены для закрытой воздуховыпускной щели.
- ** Положение регулятора расхода камеры статического давления PLR; максимальное значение соответствует полностью открытому клапану.

Минимальный расход, обеспечивающий необходимое для его измерения давление.

Шумовые характеристики

Октавный уровень звуковой мощности и корректированный уровень звуковой мощности определяются по формулам:

 $L_{\text{wokt}} = L_{\text{p10A}} + K_{\text{okt}}$

 $L_{wA} = L_{p10A} + 4$

где: L_{wort} , дБ — октавный уровень звуковой мощности;

 L_{p10A} , дБ(A) — уровень звука (корректированный уровень звукового давления для помещения с эквивалентной площадью звукопоглощения 10 m^2) определяется по диаграмме;

Кокт – поправочный коэффициент;

 L_{wA} , дB(A) — корректированный уровень звуковой мощности.

Модель			Попр	авочный коэ	ффициент К	окт, ДБ		-7 -8 -8							
Модель	63	125	250	500	1000	2000	4000	8000							
DLRH 160-4 c PLR 125-160	11	3	3	1	-5	-5	-9	-7							
DLRH 200-4 c PLR 160-200	8	6	0	-2	-3	-2	-10	-8							
DLRH 250-6 c PLR 200-250	5	6	0	-3	-2	-9	-10	-8							
DLRH 315-6 c PLR 250-315	6	6	0	-3	-2	-2	-10	-8							
DLRH 400-6 c PLR 315-400	10	-1	-3	-3	-2	-1	-11	-8							

Снижение шума

Модель		Снижение шума ΔL, дБ									
Модель	63	125	250	500	1000	2000	4000	8000			
DLRH 160-4 c PLR 125-160	18	10	7	18	16	18	14	18			
DLRH 200-4 c PLR 160-200	14	7	7	16	14	11	15	16			
DLRH 250-6 c PLR 200-250	11	7	7	11	11	11	14	17			
DLRH 315-6 c PLR 250-315	10	5	6	10	12	11	13	17			
DLRH 400-6 c PLR 315-400	8	4	7	7	10	11	13	15			

Диффузоры 1DLRE, 2DLRE

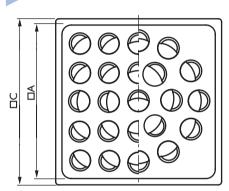
Потолочные диффузоры 1DLRE/2DLRE предназначены для подачи воздуха системами вентиляции и кондиционирования в помещениях общественного и производственного назначения закрученными струями из верхней зоны помещений.

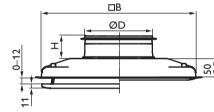
Диффузор DLRE представляет собой корпус с подводящим патрубком, к которому крепится квадратная лицевая панель с размещенными на ней подвижными воздухораздающими ячейками. Конструкция диффузоров DLKE предусматривает два положения лицевой панели: с воздуховыпускной щелью высотой 12 мм по периметру изделия и без неё. Диффузоры могут оснащаться камерой статического давления PLR со встроенными регулятором расхода воздуха и звукопоглощающими пластинами. Камера статического давления снабжена штуцерами для измерения перепада давления и специальным устройством для настройки положения регулятора расхода воздуха. Применение камеры статического давления улучшает аэродинамические и акустические характеристики диффузора, а также значительно облегчает процесс наладки вентиляционной системы.

Монтаж диффузоров осуществляется с помощью присоединительного патрубка, который крепится к воздуховоду или патрубку камеры статического давления саморезами или заклепками.

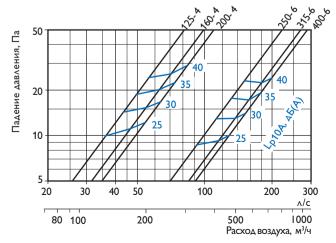
Диффузоры изготавливаются из стали и окрашиваются методом порошкового напыления в белый цвет (RAL 9010).

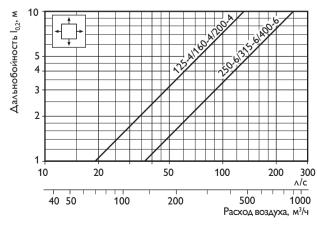
Варианты исполнения лицевой панели



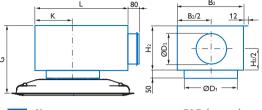

Характеристики диффузоров 1DLRE, 2DLRE

Модель	□А, мм	□В, мм	□С, мм	Ø D , мм	Н, мм	Вес, кг
1(2)DLRE 125-4	395	399	425	124	58	2,2
1(2)DLRE 160-4	395	399	425	159	58	2,2
1(2)DLRE 200-4	395	399	425	199	58	2,1
1(2)DLRE 250-6	565	569	595	249	58	4,0
1(2)DLRE 315-6	565	569	595	314	58	3,9
1(2)DLRE 400-6	565	569	595	393	66	3,9

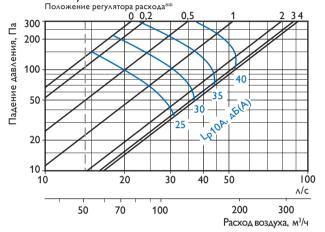

_ POLAR



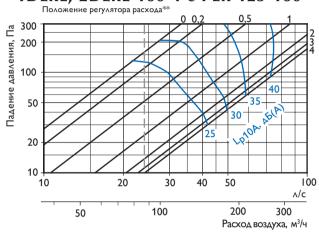
1DLRE, 2DLRE*



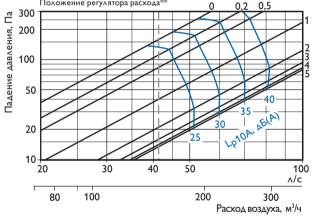
^{*} Аэродинамические и аккустические характеристики диффузоров приведены для закрытой воздуховыпускной щели.

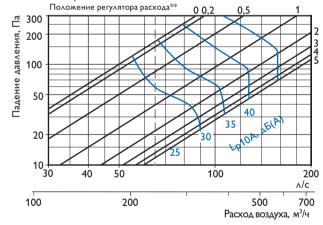

Характеристики диффузоров 1(2)DLRE с камерами статического давления PLR

Модель	ØD ₁ ,	$\emptyset D_2$,	H ₂ ,	L,	B ₂ ,	K,	G _{min} ,	G _{max} ,	Bec,
Модель	мм	мм	мм	мм	ММ	мм	мм	мм	ΚΓ
1(2)DLRE 125-4 c PLR 100-125	125	99	170	320	320	120	275	305	4,3
1(2)DLRE 160-4 c PLR 125-160	160	124	170	470	320	140	275	305	5,2
1(2)DLRE 200-4 c PLR 160-200	200	159	205	500	440	170	310	340	6,1
1(2)DLRE 250-6 c PLR 200-250	250	199	245	650	480	195	350	380	9,5
1(2)DLRE 315-6 c PLR 250-315	315	249	295	700	570	225	400	430	10,8
1(2)DLRE 400-6 c PLR 315-400	400	314	360	700	570	225	470	500	11,9

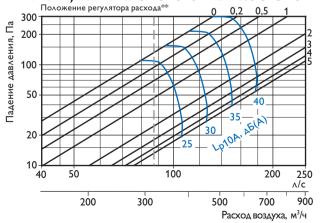


Камера статического давления PLR (опция).
 Подробнее смотрите стр. 452.


1DLRE, 2DLRE 125-4 c PLR 100-125*


1DLRE, 2DLRE 160-4 c PLR 125-160*




1DLRE, 2DLRE 200-4 c PLR 160-200*

1DLRE, 2DLRE 250-6 c PLR 200-250*

1DLRE, 2DLRE 400-6 c PLR 315-400*

^{*} Аэродинамические и аккустические характеристики диффузоров приведены для закрытой воздуховыпускной щели.

^{**} Положение регулятора расхода камеры статического давления PLR; максимальное значение соответствует полностью открытому клапану.

⁻ Минимальный расход, обеспечивающий необходимое для его измерения давление.

Шумовые характеристики

Октавный уровень звуковой мощности и корректированный уровень звуковой мощности определяются по формулам:

 $L_{\text{wokt}} = L_{\text{p10A}} + K_{\text{okt}}$

 $L_{wA} = L_{p10A} + 4$

где: L_{wort} , дБ — октавный уровень звуковой мощности;

 L_{p10A} , дБ(A) — уровень звука (корректированный уровень звукового давления для помещения с эквивалентной площадью звукопоглощения 10 m^2) определяется по диаграмме;

Кокт – поправочный коэффициент;

 L_{wA} , дS(A) — корректированный уровень звуковой мощности.

Модель	Поправочный коэффициент Кокт, дБ									
Модель	63	125	250	500	1000	2000	4000	8000		
1(2)DLRE 125-4	8	1	0	3	0	-9	-12	-8		
1(2)DLRE 160-4	2	3	1	2	0	-9	-12	-7		
1(2)DLRE 200-4	4	8	1	1	0	-9	-11	-7		
1(2)DLRE 250-6	4	4	3	2	0	-9	-14	-8		
1(2)DLRE 315-6	0	3	3	2	0	-10	-13	-7		
1(2)DLRE 400-6	5	-5	3	2	0	-10	-12	-7		
1(2)DLRE 125-4 c PLR 100-125	7	11	2	1	-4	-7	-10	-6		
1(2)DLRE 160-4 c PLR 125-160	12	9	4	2	-4	-9	-9	-6		
1(2)DLRE 200-4 c PLR 160-200	3	10	3	1	-1	-10	-11	-7		
1(2)DLRE 250-6 c PLR 200-250	5	10	4	1	-2	-9	-13	-7		
1(2)DLRE 315-6 c PLR 250-315	6	7	3	0	-1	-7	-10	-6		
1(2)DLRE 400-6 c PLR 315-400	4	8	3	2	0	-11	-14	-8		

Снижение шума

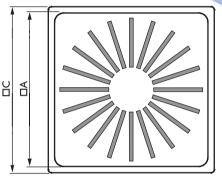
Модель				Снижение і	шума ∆L, дБ			
МОДЕЛЬ	63	125	250	500	1000	2000	4000	8000
1(2)DLRE 125-4	18	14	6	2	4	5	4	5
1(2)DLRE 160-4	18	11	5	1	3	2	5	5
1(2)DLRE 200-4	16	11	4	1	3	4	5	5
1(2)DLRE 250-6	13	7	2	1	1	2	4	4
1(2)DLRE 315-6	12	7	2	0	1	2	3	4
1(2)DLRE 400-6	10	6	1	-1	1	2	3	5
1(2)DLRE 125-4 c PLR 100-125	20	11	12	14	24	16	15	12
1(2)DLRE 160-4 c PLR 125-160	18	10	7	18	16	18	14	18
1(2)DLRE 200-4 c PLR 160-200	14	7	7	16	14	11	15	16
1(2)DLRE 250-6 c PLR 200-250	11	7	7	11	11	11	14	17
1(2)DLRE 315-6 c PLR 250-315	10	5	6	10	12	11	13	17
1(2)DLRE 400-6 c PLR 315-400	8	4	7	7	10	11	13	15

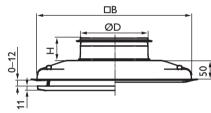
POLAR

Воздухораспределительные устройства

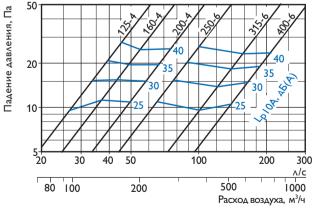
Потолочные диффузоры DLRV предназначены для подачи воздуха системами вентиляции и кондиционирования в помещениях общественного и производственного назначения закрученными струями из верхней зоны помещений.

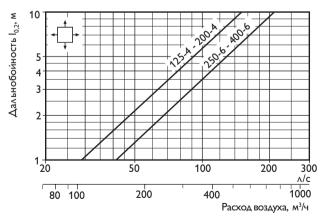
Диффузор DLRV представляет собой корпус с подводящим патрубком, к которому крепится квадратная лицевая панель с радиально расположенными прорезями и встроенными дефлекторами, предназначенными для изменения направления движения воздуха. Конструкция диффузоров DLRV предусматривает два положения лицевой панели: с воздуховыпускной щелью высотой 12 мм по периметру изделия и без неё. Диффузоры могут оснащаться камерой статического давления PLR со встроенными регулятором расхода воздуха и звукопоглощающими пластинами. Камера статического давления снабжена штуцерами для измерения перепада давления и специальным устройством для настройки положения регулятора расхода воздуха. Применение камеры статического давления улучшает аэродинамические и акустические характеристики диффузора, а также значительно облегчает процесс наладки вентиляционной системы.


Монтаж диффузоров осуществляется с помощью присоединительного патрубка, который крепится к воздуховоду или патрубку камеры статического давления саморезами или заклепками.

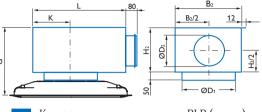

Диффузоры изготавливаются из стали и окрашиваются методом порошкового напыления в белый цвет (RAL 9010).

Характеристики диффузоров DLRV

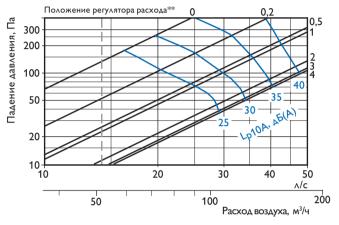

Модель	□А, мм	□В, мм	□С, мм	Ø D , мм	Н, мм	Вес, кг	
DLRV 125-4	395	399	425	124	58	2,4	
DLRV 160-4	395	399	425	159	58	2,4	
DLRV 200-4	395	399	425	199	58	2,3	
DLRV 250-6	565	569	595	249	58	4,4	
DLRV 315-6	565	569	595	314	58	4,3	
DLRV 400-6	565	569	595	399	66	4,3	


ESIGN

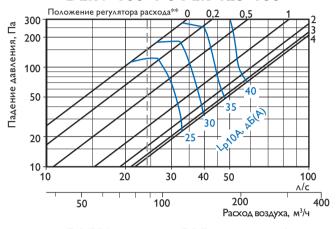
DLRV*



^{*} Аэродинамические и аккустические характеристики диффузоров приведены для закрытой воздуховыпускной щели.

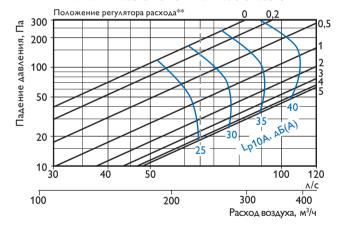

Характеристики диффузоров DLRV с камерами статического давления PLR

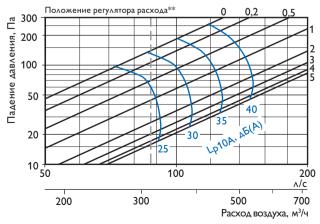
Модель	ØD ₁ ,	$\emptyset D_2$,	H ₂ ,	L,	B ₂ ,	K,	G _{min} ,	G _{max} ,	Bec,
Модель	мм	мм	MM	мм	мм	ММ	мм	мм	ΚΓ
DLRV 125-4 c PLR 100-125	125	99	170	320	320	120	275	305	4,5
DLRV 160-4 c PLR 125-160	160	124	170	470	320	140	275	305	5,4
DLRV 200-4 c PLR 160-200	200	159	205	500	440	170	310	340	6,3
DLRV 250-6 c PLR 200-250	250	199	245	650	480	195	350	380	9,9
DLRV 315-6 c PLR 250-315	315	249	295	700	570	225	400	430	11,2
DLRV 400-6 c PLR 315-400	400	314	360	700	570	225	470	500	12,3

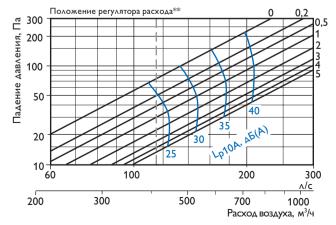


Камера статического давления PLR (опция).
 Подробнее смотрите стр. 452.

DLRV 125-4 c PLR 100-125*


DLRV 160-4 c PLR 125-160*


DLRV 200-4 c PLR 160-200*


DLRV 250-6 c PLR 200-250*

DLRV 315-6 c PLR 250-315*

DLRV 400-6 c PLR 315-400*

- * Аэродинамические и аккустические характеристики диффузоров приведены для закрытой воздуховыпускной щели.
- ** Положение регулятора расхода камеры статического давления PLR; максимальное значение соответствует полностью открытому клапану.
- Минимальный расход, обеспечивающий необходимое для его измерения давление.

Шумовые характеристики

Октавный уровень звуковой мощности и корректированный уровень звуковой мощности определяются по формулам:

 $L_{\text{wokt}} = L_{\text{p10A}} + K_{\text{okt}}$

 $L_{wA} = L_{p10A} + 4$

где: L_{wort} , дБ — октавный уровень звуковой мощности;

 L_{p10A} , дБ(A) — уровень звука (корректированный уровень звукового давления для помещения с эквивалентной площадью звукопоглощения 10 m^2) определяется по диаграмме;

Кокт – поправочный коэффициент;

 L_{wA} , дB(A) — корректированный уровень звуковой мощности.

Молон	Поправочный коэффициент К _{окт} , дБ										
Модель	63	125	250	500	1000	2000	4000	8000			
DLRV 125-4	2	3	-1	2	0	-9	-13	-8			
DLRV 160-4	2	5	1	2	1	-11	-14	-8			
DLRV 200-4	1	1	2	2	1	-11	-14	-8			
DLRV 250-6	2	4	3	3	0	-11	-14	-8			
DLRV 315-6	-1	4	3	3	0	-13	-15	-8			
DLRV 400-6	6	-3	4	3	0	-12	-14	-8			
DLRV 125-4 c PLR 100-125	7	11	2	1	-4	-7	-10	-6			
DLRV 160-4 c PLR 125-160	12	9	4	2	-4	-9	-9	-6			
DLRV 200-4 c PLR 160-200	3	10	3	1	-1	-10	-11	-7			
DLRV 250-6 c PLR 200-250	5	10	4	1	-2	-9	-13	-7			
DLRV 315-6 c PLR 250-315	6	7	3	0	-1	-7	-10	-6			
DLRV 400-6 c PLR 315-400	4	8	3	2	0	-11	-14	-8			

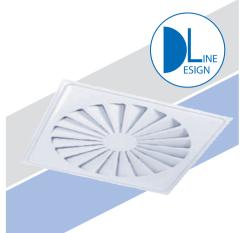
Снижение шума

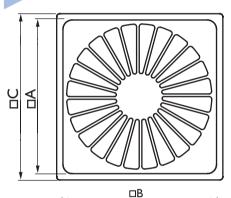
Модель	Снижение шума ΔL, дБ										
Модель	63	125	250	500	1000	2000	4000	8000			
DLRV 125-4	18	14	6	2	4	5	4	5			
DLRV 160-4	18	11	5	1	3	2	5	5			
DLRV 200-4	16	11	4	1	3	4	5	5			
DLRV 250-6	13	7	2	1	1	2	4	4			
DLRV 315-6	12	7	2	0	1	2	3	4			
DLRV 400-6	10	6	1	-1	1	2	3	5			
DLRV 125-4 c PLR 100-125	20	11	12	14	24	16	15	12			
DLRV 160-4 c PLR 125-160	18	10	7	18	16	18	14	18			
DLRV 200-4 c PLR 160-200	14	7	7	16	14	11	15	16			
DLRV 250-6 c PLR 200-250	11	7	7	11	11	11	14	17			
DLRV 315-6 c PLR 250-315	10	5	6	10	12	11	13	17			
DLRV 400-6 c PLR 315-400	8	4	7	7	10	11	13	15			

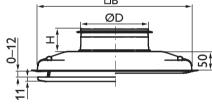
Диффузоры DLRZ

Потолочные диффузоры DLRZ предназначены для подачи воздуха системами вентиляции и кондиционирования в помещениях общественного и производственного назначения закрученными струями из верхней зоны помещений.

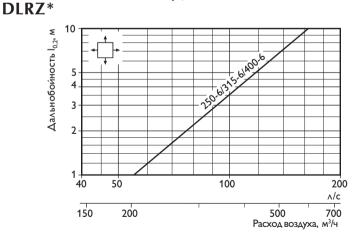
Диффузор DLRZ представляет собой корпус с подводящим патрубком, к которому крепится квадратная лицевая панель с лопаточным закручивателем потока. Конструкция диффузоров DLRZ предусматривает два положения лицевой панели: с воздуховыпускной щелью высотой 12 мм по периметру изделия и без нее. Диффузоры могут оснащаться камерой статического давления PLR со встроенными регулятором расхода воздуха и звукопоглощающими пластинами. Камера статического давления снабжена штуцерами для измерения перепада давления и специальным устройством для настройки положения регулятора расхода воздуха. Применение камеры статического давления улучшает аэродинамические и акустические характеристики диффузора, а также значительно облегчает процесс наладки вентиляционной системы.


Монтаж диффузоров осуществляется с помощью присоединительного патрубка, который крепится к воздуховоду или патрубку камеры статического давления саморезами или заклепками.

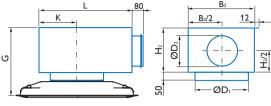

Диффузоры изготавливаются из стали и окрашиваются методом порошкового напыления в белый цвет (RAL 9010).


Характеристики диффузоров DLRZ

Модель	□А, мм	□В, мм	□С, мм	Ø D , мм	Н, мм	Вес, кг
DLRZ 250-6	565	569	595	249	58	4,4
DLRZ 315-6	565	569	595	314	58	4,3
DLRZ 400-6	565	569	595	399	66	4,3


_ POLAR

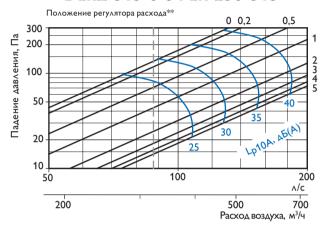
20 100 200 300 400 л/с 1000 Расход воздуха, м³/ч



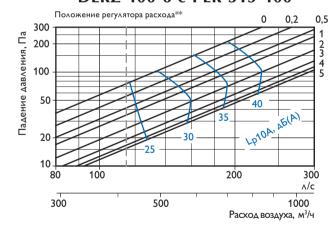
^{*} Аэродинамические и аккустические характеристики диффузоров приведены для закрытой воздуховыпускной щели.

Характеристики диффузоров DLRZ с камерами статического давления PLR

Модель	ØD₁, мм	ØD ₂ ,	H ₂ ,	L, мм	B ₂ ,	К, мм	G _{min} ,	G _{max} ,	Вес, кг
DLRZ 250-6 c PLR 200-250	250	199	245	650	480	195	350	380	9,9
DLRZ 315-6 c PLR 250-315	315	249	295	700	570	225	400	430	11,2
DLRZ 400-6 c PLR 315-400	400	314	360	700	570	225	470	500	12,3



Камера статического давления PLR (опция).
 Подробнее смотрите стр. 452.


DLRZ 250-6 c PLR 200-250*

DLRZ 315-6 c PLR 250-315*

DLRZ 400-6 c PLR 315-400*

- * Аэродинамические и аккустические характеристики диффузоров приведены для закрытой воздуховыпускной щели.
- ** Положение регулятора расхода камеры статического давления PLR; максимальное значение соответствует полностью открытому клапану.
- Минимальный расход, обеспечивающий необходимое для его измерения давление.

Шумовые характеристики

Октавный уровень звуковой мощности и корректированный уровень звуковой мощности определяются по формулам:

 $L_{\text{wokt}} = L_{\text{p10A}} + K_{\text{okt}}$

 $L_{wA} = L_{p10A} + 4$

где: L_{wort} , дБ — октавный уровень звуковой мощности;

 L_{p10A} , дБ(A) — уровень звука (корректированный уровень звукового давления для помещения с эквивалентной площадью звукопоглощения 10 m^2) определяется по диаграмме;

Кокт – поправочный коэффициент;

 L_{wA} , дE(A) — корректированный уровень звуковой мощности.

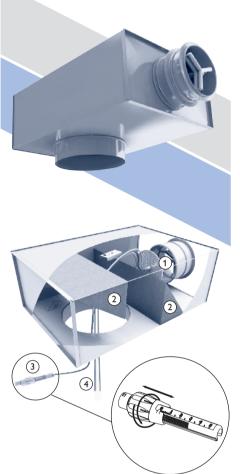
Модель	Поправочный коэффициент Кокт, дБ									
Модель	63	125	250	500	1000	2000	4000	8000		
DLRZ 250-6	4	3	1	2	1	-12	-15	-8		
DLRZ 315-6	2	3	3	2	0	-11	-15	-8		
DLRZ 400-6	10	-2	4	2	0	-10	-14	-8		
DLRZ 250-6 c PLR 200-250	2	11	4	2	-3	-10	-13	-7		
DLRZ 315-6 c PLR 250-315	6	9	3	1	-2	-8	-11	-6		
DLRZ 400-6 c PLR 315-400	6	9	3	2	-1	-9	-13	-8		

Снижение шума

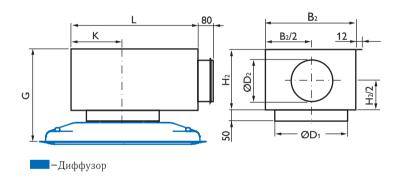
Модель	Снижение шума ΔL, дБ									
Модель	63	125	250	500	1000	2000	4000	8000		
DLRZ 250-6	13	7	2	1	1	2	4	4		
DLRZ 315-6	12	7	2	0	1	2	3	4		
DLRZ 400-6	10	6	1	-1	1	2	3	5		
DLRZ 250-6 c PLR 200-250	11	7	7	11	11	11	14	17		
DLRZ 315-6 c PLR 250-315	10	5	6	10	12	11	13	17		
DLRZ 400-6 c PLR 315-400	8	4	7	7	10	11	13	15		

POLAR

Воздухораспределительные устройства



Камеры статического давления PLR предназначены для монтажа потолочных диффузоров с круглыми присоединительными патрубками в системах вентиляции и кондиционирования. Они обеспечивают выравнивание и стабилизацию воздушного потока, поступающего в диффузор, что существенно улучшает условия формирования и аэродинамические характеристики образуемых диффузорами воздушных струй.


Камеры статического давления изготавливаются из оцинкованной стали и оснащаются встроенными звукопоглощающими отражателями и регулятором расхода воздуха, который позволяет измерять и регулировать количество проходящего через нее воздуха. Измерение производительности камеры осуществляется по падению давления на регуляторе расхода с помощью дифференциального манометра, подсоединяемого к измерительным патрубкам камер.

Регулятор расхода оснащается ручкой управления с градуировочной шкалой, деления которой соответствуют линиям на графиках круглых диффузоров, что позволяет точно установить необходимый для данного диффузора расход воздуха. Это помогает провести предварительную наладку оборудования и при необходимости скорректировать рабочую точку каждого диффузора без проведения дополнительных измерений и расчетов.

Монтаж диффузоров в камерах статического давления осуществляется за присоединительный патрубок, который крепится к патрубку камеры статического давления саморезами или заклепками. После чего камера статического давления присоединяется своим патрубком к воздуховоду.

- 1 Регулятор расхода воздуха;
- 2 Звукопоглощающие отражатели;
- 3 Ручка управления регулятором расхода воздуха;
- 4 Измерительные патрубки для подключения дифференциального манометра.

Характеристики камер статического давления

Модель	ØD₁, мм	ØD₂, мм	Н2, мм	L, mm	В ₂ , мм	К, мм	G _{min} , MM	G _{max} , MM	Вес, кг
PLR 100-125	125	99	170	320	320	120	265	300	2,1
PLR 125-160	160	124	170	470	320	140	265	300	3,0
PLR 160-200	200	159	205	500	440	170	300	335	4,0
PLR 200-250	250	199	245	650	480	195	340	375	5,5
PLR 250-315	315	249	295	700	570	225	390	425	6,9
PLR 315-400	400	314	360	700	570	225	455	490	8,0

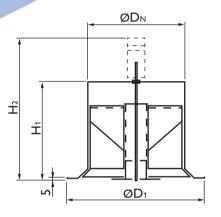
_ POLAR BEAR

<u>Диффузоры вихревые DZA</u>

Вихревые диффузоры DZA предназначены для подачи воздуха системами вентиляции и кондиционирования в помещениях общественного и производственного назначения больших объемов и/или с высокими потолками (концертные, спортивные, выставочные залы, стадионы, торговые комплексы, производственные цеха, вокзалы, ангары и т.п.) закрученными струями из верхней зоны помещений. Их можно использовать для формирования горизонтальных, вертикальных или смешанных воздушных струй.

Диффузоры DZA состоят из корпуса, в котором установлена подвижная цилиндрическая вставка с раструбом, закручивателями на выходе и центральным цилиндром с крышкой. Конструкция диффузора позволяет вращением центральной вставки регулировать форму струи от горизонтальной веерной при подаче охлажденного воздуха (вставка полностью ввернута, крышка полностью закрыта) до вертикальной конической при подаче подогретого воздуха (вставка полностью вывернута, крышка полностью открыта).

Диффузоры могут оснащаться электроприводом с двухпозиционным (DZA...E1) или аналоговым (DZA...E2) управлением, что позволяет реализовать систему с автоматическим изменением схемы воздухораспределения в зависимости от времени года (кондиционирование/вентиляция/воздушное отопление).

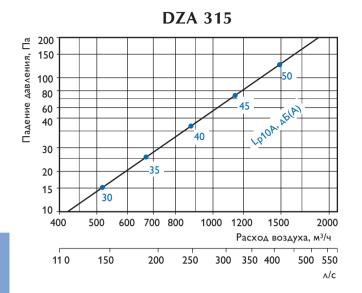

Монтаж диффузоров осуществляется с помощью присоединительного патрубка, который крепится к воздуховоду саморезами или заклепками.

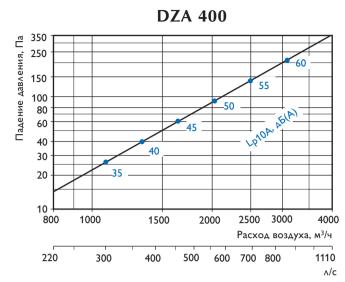
Диффузоры изготавливаются из стали и окрашиваются методом порошкового напыления в белый цвет (RAL 9010).

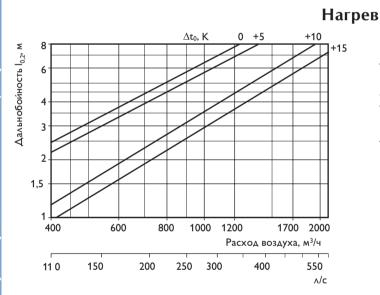
Выпускается три исполнения диффузоров:

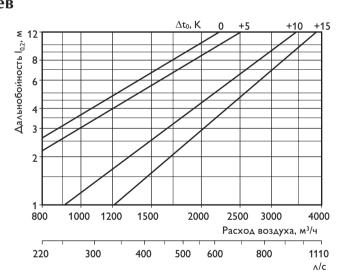
- ★ DZA диффузор с ручным приводом;
- ★ DZA...E1 диффузор с электрическим приводом Вкл. / Выкл.;
- * DZA...E2 − диффузор с электрическим приводом 0−10 В.

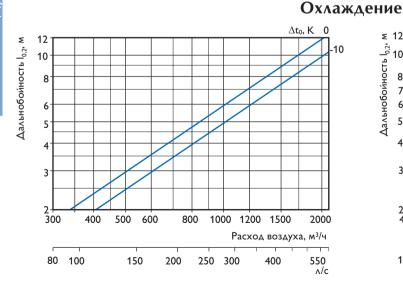
Характеристики воздухораспределителей DZA

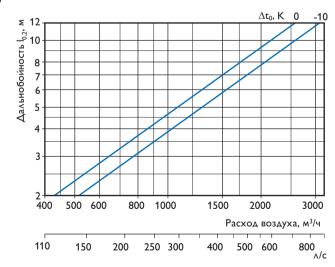

Модель	Ø D _N , мм	Ø D ₁, мм	Н₁, мм	Н ₂ , мм	Вес*, кг
DZA 315	313	470	240	360	6,8
DZA 400	398	650	260	380	7,4
DZA 500	498	770	315	460	11,6
DZA 630	628	940	440	560	17,7
DZA 710	708	1240	530	565	31,0

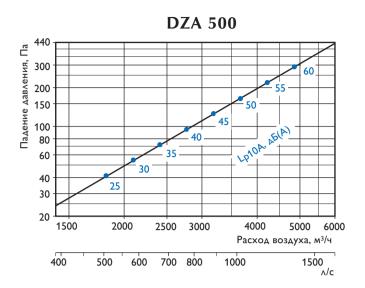

^{*} Вес указан для диффузора с ручным приводом.

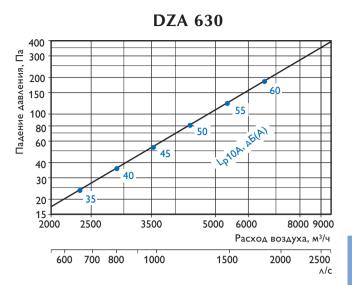

___ POLAR _ BEAR

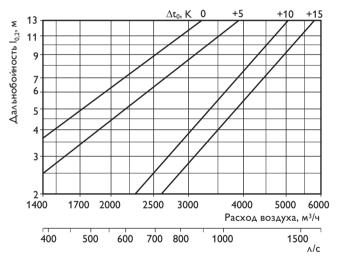

Воздухораспределительные

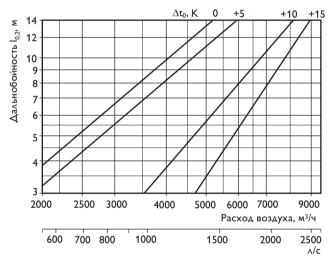

устройства

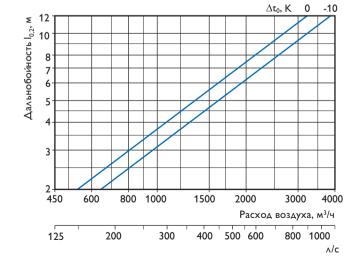


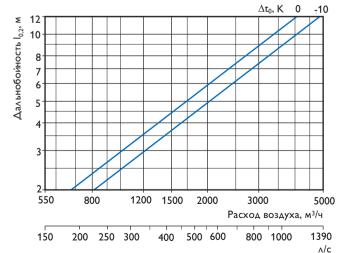




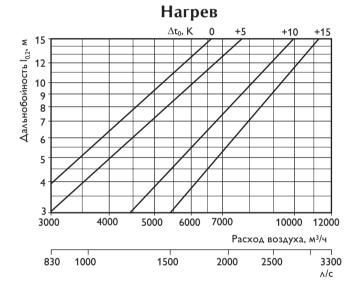

Рекомендуемый предельный диапазон перепада температур подаваемого воздуха и помещения (Δt_0^{max}) должен составлять для нагретой струи от 0К до 15К, для охлажденной струи от -12К до 0К.

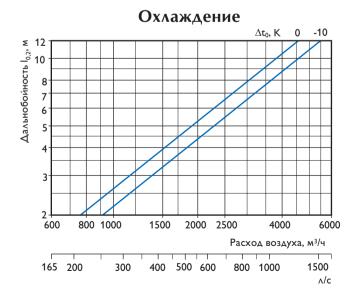




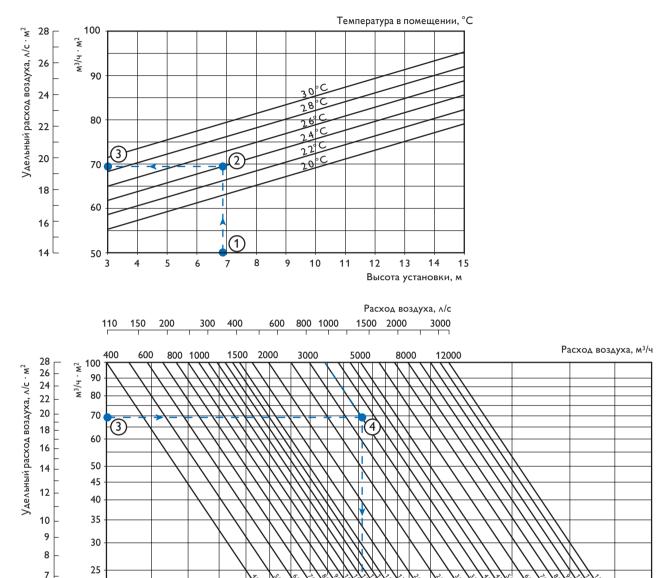

Нагрев

Охлаждение





Рекомендуемый предельный диапазон перепада температур подаваемого воздуха и помещения (Δt_0^{max}) должен составлять для нагретой струи от 0К до 15К, для охлажденной струи от -12К до 0К.



Рекомендуемый предельный диапазон перепада температур подаваемого воздуха и помещения (Δt_0^{max}) должен составлять для нагретой струи от 0К до 15К, для охлажденной струи от -12К до 0К.

Выбор расстояния между диффузорами

Алгоритм подбора:

10

20

15

6

5

1. Исходя из технического задания, по графикам падения давления и дальнобойности диффузоров проводится предварительный аэродинамический расчет, и определяются типоразмер, количество диффузоров, расход воздуха для данного типоразмера и высота их установки.

8 9 10

15

20

Минимальное расстояние между диффузорами, м

- 2. В зависимости от требуемой высоты установки (точка 1) и температуры в помещении (точка 2) по верхнему графику определяется максимальный удельный расход воздуха на единицу площади обслуживаемой зоны помещения (точка 3).
- 3. По величине максимального удельного расхода воздуха (точка 3) и расходу воздуха через каждый диффузор (точка 4) на нижнем графике находим минимальное допустимое расстояние между диффузорами (точка 5). Реальное расстояние между диффузорами всегда должно быть больше полученного значения.

Примечание: Если полученное значение минимально допустимого расстояния вызывает затруднение при размещении рассчитанного количества диффузоров в данном помещении, необходимо скорректировать расход воздуха через каждый диффузор, типоразмер и / или количество диффузоров.

30

POLAR _ BEAR

Воздухораспределительные устройства

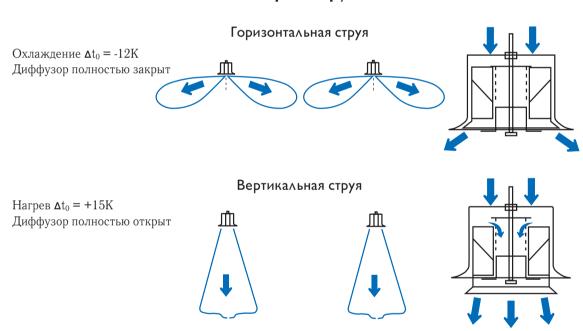
Шумовые характеристики

Октавный уровень звуковой мощности и корректированный уровень звуковой мощности определяются по формулам:

 $L_{\text{wokt}} = L_{\text{p10A}} + K_{\text{okt}}$

 $L_{wA} = L_{p10A} + 4$

где: L_{wort} , дБ – октавный уровень звуковой мощности;


 L_{P10A} , дБ(A) — уровень звука (корректированный уровень звукового давления для помещения с эквивалентной площадью звукопоглощения 10 m^2) определяется по диаграмме;

Кокт – поправочный коэффициент;

 L_{wA} , дB(A) — корректированный уровень звуковой мощности.

Модель	Поправочный коэффициент К $_{ m okt}$, дБ									
модель	63	125	250	500	1000	2000	4000	8000		
DZA 315	6	1	0	-2	-6	-11	-15	-23		
DZA 400	4	0	-2	-4	-7	-11	-16	-26		
DZA 500	3	-1	-1	-2	-5	-7	-14	-25		
DZA 630	3	0	-2	-3	-5	-9	-13	-24		
DZA 710	2	0	-2	-3	-6	-11	-13	-26		

Форма струи

_ POLAR BEAR

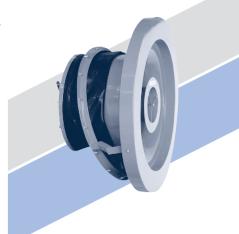
Диффузоры вихревые DZU

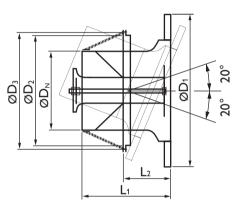
Вихревые диффузоры DZU предназначены для подачи воздуха системами вентиляции и кондиционирования в помещениях общественного и производственного назначения больших объемов и/или с высокими потолками (концертные, спортивные, выставочные залы, стадионы, торговые комплексы, производственные цеха, вокзалы, ангары и т.п.) закрученными дальнобойными струями из верхней зоны помещений.

Диффузоры DZU представляют собой снабженный поворотным механизмом корпус, в центре которого установлена подвижная цилиндрическая вставка. Конструкция диффузора позволяет вращением вставки менять форму струи с конической (вставка полностью ввернута) на компактную (вставка полностью вывернута), меняя тем самым дальнобойность. Поворотный механизм обеспечивает регулирование угла наклона струи подаваемого воздуха в вертикальной плоскости в диапазоне $\pm 20^{\circ}$ (летом струя направляется вверх при охлаждении, зимой — вниз при нагреве). Диффузоры могут оснащаться одним или двумя электроприводами, что позволяет реализовать систему с автоматическим изменением схемы воздухораспределения в зависимости от времени года (кондиционирование/вентиляция / воздушное отопление).

Монтаж диффузоров осуществляется с помощью фланца, который крепится на плоскую поверхность или к фланцу круглого воздуховода саморезами или винтами.

Диффузоры изготавливаются из стали и окрашиваются методом порошкового напыления в белый цвет (RAL 9010).

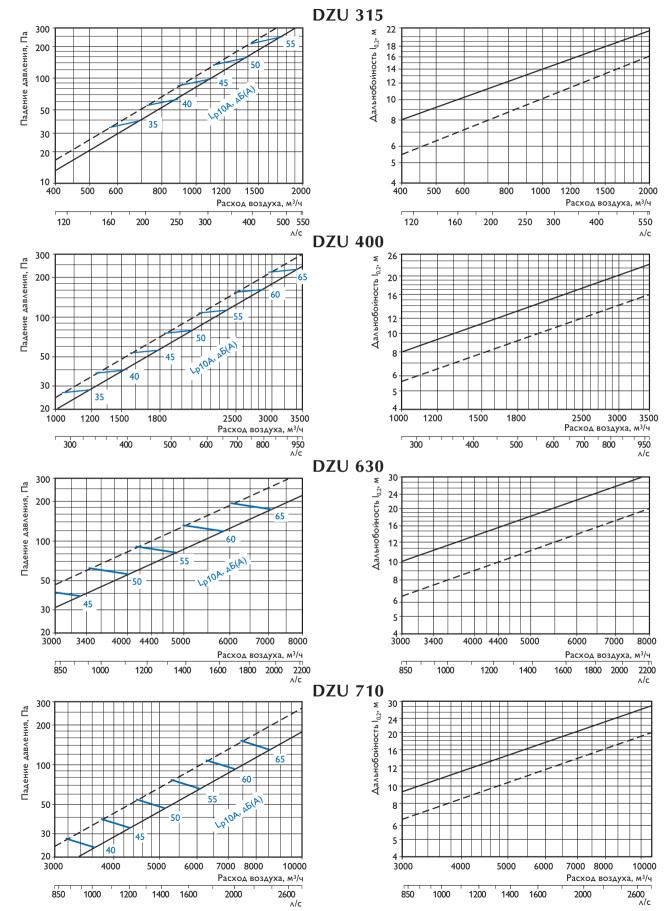

Выпускается три исполнения диффузоров:


- * DZU... диффузор с ручным регулированием угла наклона и ручным изменением формы приточной струи;
- *DZU...MA диффузор с автоматическим регулированием угла наклона и ручным изменением формы приточной струи;
- ★ DZU...MF диффузор с автоматическим регулированием угла наклона и автоматическим изменением формы приточной струи.

Характеристики воздухораспределителей DZU

Модель	ØD _N , MM	Ø D ₁, мм	ØD₂, MM	Ø D ₃, мм	ØL₁, мм	ØL₂, MM	Вес*, кг
DZU 315	315	560	440	470	150	345	10,0
DZU 400	400	710	560	596	205	410	11,9
DZU 630	630	998	865	903	240	620	28,0
DZU 710	710	1246	920	960	310	690	38,0

^{*} Вес указан для диффузора с ручными приводами.



__ POLAR _ BEAR

Воздухораспределительные

устройства

Рекомендуемое предельное значение избыточной температуры приточной струи (как нагретой, так и охлажденной) $\Delta t_0^{max} = 8 \text{ K}$.

- – диффузор полностью открыт.
- – диффузор полностью закрыт.

Шумовые характеристики

Октавный уровень звуковой мощности и корректированный уровень звуковой мощности определяются по формулам:

 $L_{\text{wokt}} = L_{\text{p10A}} + K_{\text{okt}}$

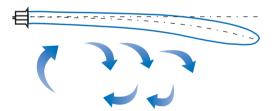
 $L_{wA} = L_{p10A} + 4$

где: L_{wort} , дB — октавный уровень звуковой мощности;

 L_{p10A} , дБ(A) — уровень звука (корректированный уровень звукового давления для помещения с эквивалентной площадью звукопоглощения 10 m^2) определяется по диаграмме;

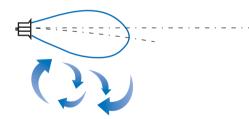
 $K_{\text{окт}}$ – поправочный коэффициент;

 L_{wA} , дE(A) – корректированный уровень звуковой мощности.


Модель		ффициент Кок	фициент Кокт, дБ					
Модель	63	125	250	500	1000	2000	4000	8000
DZU 315	3	2	1	4	4	-12	-18	-28
DZU 400	1	0	-1	-3	-5	-11	-17	-27
DZU 630	0	-1	-2	-3	-5	-9	-15	-25
DZU 710	2	1	0	-4	-7	-11	-17	-27

Снижение шума

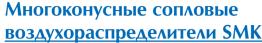
Модель		Снижение шума ΔL, дБ										
Модель	63	125	250	500	1000	2000	4000	8000				
DZU 315	3	4	4	9	7	3	3	2				
DZU 400	6	3	2	5	8	4	4	3				
DZU 630	6	3	4	6	8	5	5	4				
DZU 710	4	2	3	5	6	7	4	4				


Форма струи

Компактная струя

Диффузор полностью открыт

Коническая струя


Диффузор полностью закрыт

Рекомендации по монтажу

Модель	Минимальная высота установки, м	Минимальное расстояние между диффузорами, м
DZU 315	4	1,2
DZU 400	4	1,5
DZU 630	4	2,1
DZU 710	4	2,5

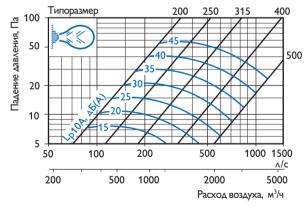
POLAR BEAR

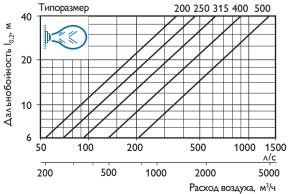
Воздухораспределительные устройства

Многоконусные сопловые воздухораспределители SMK предназначены для применения в системах вентиляции и кондиционирования помещений общественного и производственного назначения больших объемов и/или с высокими потолками (концертные, спортивные, выставочные залы, стадионы, торговые комплексы, производственные цеха, вокзалы, ангары и т.п.), где необходимо обеспечить раздачу значительных объемов воздуха с высокой дальнобойностью.

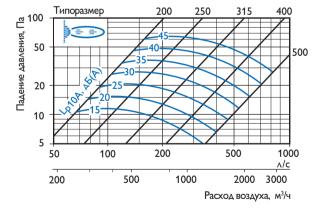
Многоконусные сопловые воздухораспределители SMK представляют собой корпус с подводящим патрубком, внутри которого на подвижной оси расположена центральная вставка, выполненная в виде набора цилиндров с коническим раструбом. Изменением положения центральной вставки достигается выбор одного из двух вариантов подачи воздуха — компактной (конический раструб направлен внутрь воздухораспределителя) или конической струёй (конический раструб направлен наружу от воздухораспределителя) и, при необходимости, отклонение направления струи в диапазоне ±20° от оси симметрии воздухораспределителя.

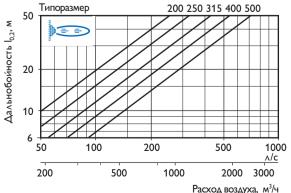
Монтаж осуществляется с помощью присоединительного патрубка, который крепится к воздуховоду на горизонтальных или вертикальных участках.


Воздухораспределители изготавливаются из стали и окрашиваются методом порошкового напыления в белый цвет (RAL 9010).



Модель	Ød, мм	А, мм	В, мм	ØC, мм	Е, мм	Вес, кг
SMK 200	199	100	45	25	145	0,8
SMK 250	249	120	55	30	175	1,4
SMK 315	314	120	70	30	190	1,7
SMK 400	399	140	95	30	235	2,4
SMK 500	499	245	115	40	360	5,0


C A B


Коническая струя

Компактная струя

Расширение струи

Графики на стр. 462 приведены для свободной изотермической струи. Дальнобойность при скорости 0,3 м/с и 0,4 м/с определяется по следующим формулам:

$$l_{0,3} \approx 0.67 \times l_{0,2}$$

$$l_{0,4} \approx 0.50 \times l_{0,2}$$

Максимальное отклонение центральной вставки от среднего положения составляет для компактной струи $\pm 20^\circ$, для конической струи $-\pm 15^\circ$.

При параллельной работе диффузоров, если расстояние между диффузорами меньше диаметра струи Ød, их дальнобойность увеличивается в 1,0−1,4 раза.

Шумовые характеристики

Октавный уровень звуковой мощности и корректированный уровень звуковой мощности определяются по формулам:

$$L_{\text{wokt}} = L_{\text{p10A}} + K_{\text{okt}}$$

$$L_{wA} = L_{p10A} + 4$$

где: L_{wort} , дB — октавный уровень звуковой мощности;

 L_{p10A} , дБ(A) — уровень звука (корректированный уровень звукового давления для помещения с эквивалентной площадью звукопоглощения 10 м^2) определяется по диаграмме;

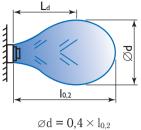
 $K_{\text{окт}}$ – поправочный коэффициент;

 L_{wA} , дE(A) – корректированный уровень звуковой мощности.

Коническая струя

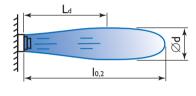
Maran	Поправочный коэффициент Кокт, дБ										
Модель	125	250	500	1000	2000	4000	8000				
SMK 200	3	2	-1	0	-3	-12	-29				
SMK 250	1	2	-1	1	-4	-12	-26				
SMK 315	3	1	-1	2	-6	-15	-28				
SMK 400	7	1	1	1	-8	-17	-29				
SMK 500	12	2	3	-2	-10	-17	-31				

Компактная струя

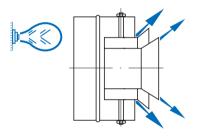

Moron	Поправочный коэффициент Кокт, дБ										
Модель	125	250	500	1000	2000	4000	8000				
SMK 200	2	-1	-2	1	-3	-17	-32				
SMK 250	0	-1	-3	2	-5	-19	-32				
SMK 315	2	-1	-2	3	-10	-20	-31				
SMK 400	4	-1	2	2	-10	-18	-32				
SMK 500	8	-1	3	1	-13	-22	-34				

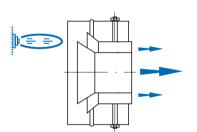
Снижение шума

Maran			Сниже	ние шума	Δ L, д Б		
Модель	125	250	500	1000	2000	4000	8000
SMK 200	12	7	3	1	-	-	-
SMK 250	10	6	2	-	-	-	-
SMK 315	9	4	2	_	_	_	_
SMK 400	7	3	1	-	-	-	-
SMK 500	6	2	_	_	_	_	_


POLAR BEAR

Коническая струя




 $\varnothing d = 0.4 \times l_{0.2}$ $L_d = 0.7 \times l_{0.2}$

Компактная струя

 $\varnothing d = 0.14 \times l_{0.2}$ $L_d = 0.7 \times l_{0.2}$

POLAR

Воздухораспределительные устройства

Сопловые воздухораспределители SBK, SLK, SFK

Сопловые воздухораспределители SBK, SLK, SFK предназначены для применения в системах вентиляции и кондиционирования помещений общественного и производственного назначения больших объемов и/или с высокими потолками (концертные, спортивные, выставочные залы, стадионы, торговые комплексы, производственные цеха, вокзалы, ангары и т.п.), где необходимо обеспечить раздачу значительных объемов воздуха с высокой дальнобойностью. Хорошие акустические характеристики позволяют применять сопловые воздухораспределители SBK, SLK, SFK в помещениях с повышенными требованиями к шуму.

Сопловые воздухораспределители SBK и SLK представляют собой корпус, внутри которого расположена подвижная сферическая центральная вставка с коническим соплом (SBK) или цилиндрическим патрубком (SLK); изменением положения центральной вставки достигается регулирование направления струи подаваемого воздуха в диапазоне ±30° в любом направлении от оси симметрии изделия. Сопловые воздухораспределители SFK представляют собой упрощённый вариант изделия — неподвижное конусное сопло.

Сопловые воздухораспределители 1SBK, 1SLK и 1SFK предназначены для монтажа на плоскую поверхность; крепление осуществляется при помощи самонарезающих винтов. Сопла 2SBK, 2SLK и 2SFK снабжены присоединительным патрубком для крепления на торец круглого воздуховода.

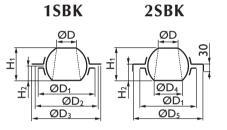
Диффузоры SBK и SLK изготавливаются из алюминия и окрашиваются методом порошкового напыления в белый цвет (RAL 9010). Диффузоры SFK изготавливаются из неокрашенного алюминия.

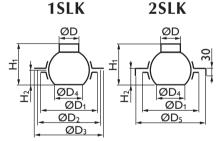
Характеристики воздухораспределителей SBK

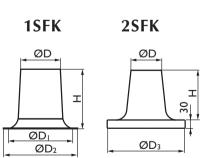
Модель	ØD, mm	ØD₁, мм	ØD₂, MM	ØD₃, мм	ØD₄, мм	ØD₅, mm	Н₁, мм	H ₂ , MM	Ød*, мм
SBK 40	40	118	128	140	53	129	82	35	125
SBK 50	50	145	172	180	62	164	92	45	160
SBK 80	80	202	228	240	100	254	148	74	250
SBK 120	120	300	316	334	150	319	221	113	315
SBK 150	150	360	380	400	186	404	276	138	400
SBK 200	200	468	492	508	240	504	367	180	500
		0000							

^{*} Диаметр воздуховода для 2SBK.

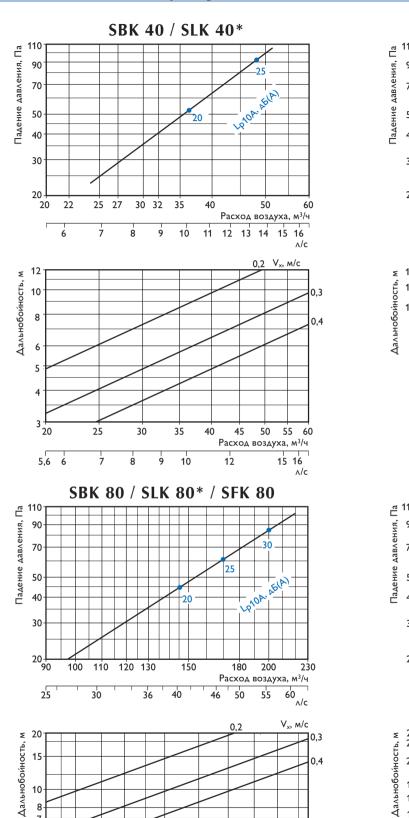
Характеристики воздухораспределителей SLK

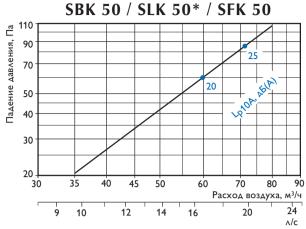

Модель	ØD, mm	ØD₁, MM	ØD₂, MM	ØD₃, мм	Ø D ₄, мм	ØD₅, мм	H ₁ , мм	H ₂ ,	Ød*, мм
SLK 40	40	118	128	140	53	129	102	35	125
SLK 50	50	145	172	180	62	164	112	45	160
SLK 80	80	202	228	240	100	254	188	74	250
SLK 120	120	300	316	334	150	319	261	113	315
SLK 150	150	360	380	400	186	404	336	138	400
SLK 200	200	468	492	508	240	504	427	180	500

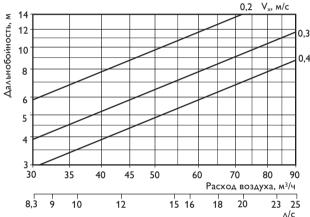

^{*} Диаметр воздуховода для 2SLK.

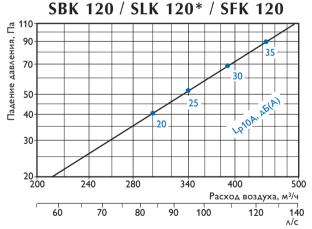

Характеристики воздухораспределителей SFK

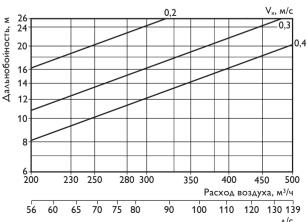
Модель	ØD, мм	Ø D ₁, мм	Ø D ₂, мм	Ø D ₃, мм	Н, мм	∅ d*, мм
SFK 50	50	102	114	129	80	125
SFK 80	80	146	158	164	120	160
SFK 120	120	212	224	254	180	250
SFK 150	150	268	280	319	245	315
SFK 200	200	310	322	359	270	355


^{*} Диаметр воздуховода для 2SFK.









^{*} Дальнобойность SLK 40, 50, 80, 120 определяется по формуле: $l_{0.2(SLK)} = 0.93 \times l_{0.2}$

180 200

Расход воздуха, м³/ч

55 60 64

35

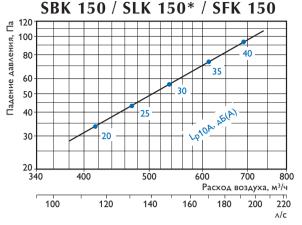
120

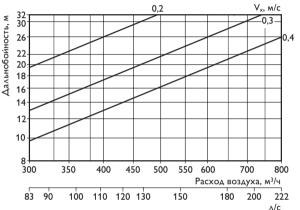
30

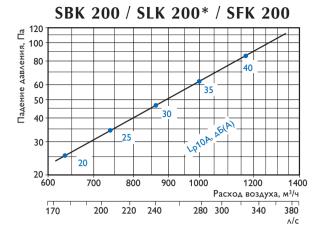
140

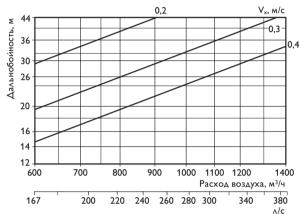
40 45 50

3十 70


80 90 100


25




Воздухораспределительные

устройства

^{*} Дальнобойность SLK 150 определяется по формуле: $l_{0.2(SLK150)} = 0.98 \times l_{0.2}$ Дальнобойность SLK 200 определяется по формуле: $l_{0.2(SLK200)} = 0.95 \times l_{0.2}$

Шумовые характеристики

Октавный уровень звуковой мощности и корректированный уровень звуковой мощности определяются по формулам:

 $L_{\text{wort}} = L_{\text{p10A}} + K_{\text{ort}} + K_2$

 $L_{wA} = L_{p10A} + 4$

где: L_{wokt}, дБ – октавный уровень звуковой мощности;

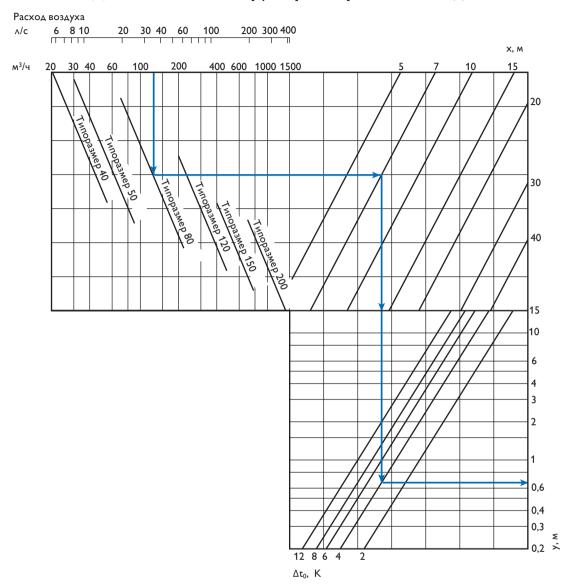
 L_{p10A} , дE(A) — уровень звука (корректированный уровень звукового давления для помещения с эквивалентной площадью звукопоглощения 10 м²) определяется по диаграмме;

 L_{wA} , дE(A) — корректированный уровень звуковой мощности;

 $K_{\text{окт}}$ – поправочный коэффициент для угла наклона сопла α =15°;

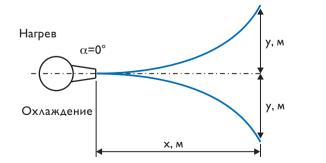
 K_2 — поправочный коэффициент для угла наклона сопла α =30° (при угле наклона α =15° K_2 = 0).

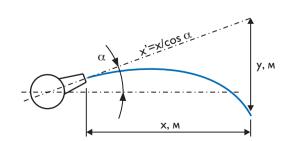
Поправочный коэффициент для угла наклона сопла $\alpha = 15^{\circ}$


Типоразмер			Пог	равочный коэ	ффициент Кокт	, дБ		
типоразмер	63	125	250	500	1000	2000	4000	8000
40	1	0	-6	0	-5	-5	-9	-13
50	6	5	0	-3	-4	-4	-10	-15
80	7	6	1	-2	-3	-7	-12	-17
120	5	4	-2	-1	-3	-4	-14	-20
150	7	6	-1	0	-5	-8	-17	-24
200	4	3	-2	-2	-2	-10	-16	-24

Поправочный коэффициент для угла наклона сопла $\alpha = 30^{\circ}$

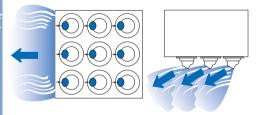
I	Модель	SBK 40 / SLK 40	SBK 50 / SLK 50	SBK 80 / SLK 80	SBK 120 / SLK 120	SBK 150 / SLK 150	SBK 200 / SLK 200
	K ₂	2	2	4	4	4	3

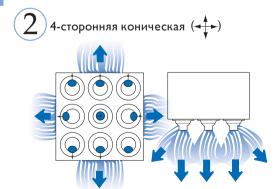



Дальнобойность струи при нагреве и охлаждении

Рекомендуемое предельное значение избыточной температуры приточной струи (как нагретой, так и охлаждённой) $\Delta t_0^{\text{max}} \leqslant 8 \text{K}.$

Форма струи



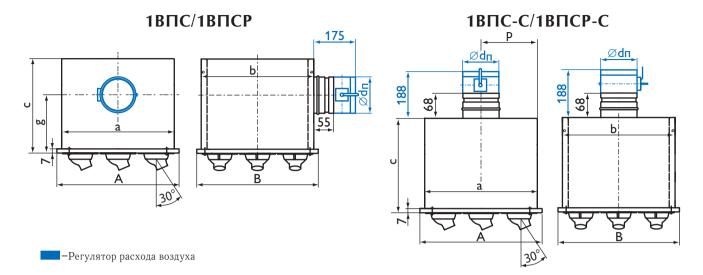

Схемы поворота сопловых ячеек, при формировании различных видов приточных струй

1-сторонняя компактная ()

Воздухораспределительные устройства

Воздухораспределители панельные 1ВПС, 1ВПСР

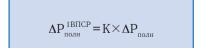
Воздухораспределители панельные 1ВПС, 1ВПСР предназначены для применения в системах вентиляции и кондиционирования помещений общественного и производственного назначения больших объемов и / или с высокими потолками (концертные, спортивные, выставочные залы, стадионы, торговые комплексы, производственные цеха, вокзалы, ангары и т.п.), где необходимо обеспечить раздачу воздуха с высокой дальнобойностью.


Конструктивно воздухораспределители 1ВПС, 1ВПСР состоят из воздухораздающей панели квадратной формы, в которой установлены поворотные сопловые ячейки, и камеры статического давления (КСД) с подводящим патрубком круглого сечения. Сопловые ячейки можно поворачивать в диапазоне ±30° в любом направлении от оси. При повороте сопел параллельно в одну сторону на определенный угол от геометрической оси панели (положение 1) отдельные струи и суммарный воздушный поток отклоняются на тот же угол. При этом дальнобойность потока не изменяется. При повороте сопел на угол 30° в разные стороны от геометрической оси (положение 2) направление суммарного потока остается неизменным, а его дальнобойность уменьшается в 2,5 раза. Потери давления (аэродинамическое сопротивление) остаются постоянными при любом положении сопел.

КСД имеет боковой или торцевой подвод и обеспечивает равномерное истечение воздуха из воздухораспределителя. Для изменения и регулирования расхода воздуха воздухораспределители 1ВПСР дополнительно оснащаются регулятором расхода воздуха, установленным в подводящем патрубке КСД.

Воздухораспределители 1ВПС, 1ВПСР устанавливаются на отводах круглых воздуховодов при открытой прокладке воздуховодов или встраиваются в подвесные потолки или стеновые панели. Монтаж к воздуховоду осуществляется с помощью самонарезающих винтов. Герметичность соединения с подводящим воздуховодом обеспечивается резиновым уплотнением.

Панель изготавливается из стали и окрашивается методом порошкового напыления в белый цвет (RAL 9016), ячейки — пластик белого цвета, КСД — неокрашенная оцинкованная сталь. При изготовлении на заказ возможна окраска панели и КСД в любой цвет по каталогу RAL и окраска ячеек по каталогу "Эксклюзив" (см. Приложение 2 на стр. 668).

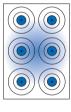

Характеристики воздухораспределителей 1ВПС, 1ВПСР

Размер	F ₀ ,	Ød₁,	a,	b,	С,	g,	p,	Bec	, кг
A×B, MM	M^2	мм	мм	мм	мм	мм	мм	1ВПС	1ВПСР
				1ВПС/	1ВПСР				
350 imes 350	0,0056	199	313	333	390	230	_	5,2	6,0
450 × 450	0,0100	199	420	420	350	211	_	7,3	8,2
595 × 595	0,0223	314	5 <i>7</i> 0	570	430	249	_	12,2	13,6
				1ВПС-С/	1ВПСР-С				
350 imes 350	0,0056	199	313	333	300	_	156	3,7	4,6
450 × 450	0,0100	199	420	420	200	_	210	5,7	6,6
595 × 595	0,0223	314	570	570	200	_	280	8,9	10,9

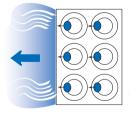
Данные для подбора воздухораспределителей 1BПС, 1BПСР при подаче воздуха

1 – компактная струя (оси всех сопел расположены параллельно), 2 – коническая струя (оси сопел направлены под углом 30° в разные стороны от центра воздухораспределителя)

			L _{wA} =	= 20 д	Б(А)		L _{wA} =35 дБ(A)						L _{wA} =		$L_{wA} = 50$ дБ(A)						
Размер А×В, мм	Вид струи	L ₀ ,	ΔР _{полн} , Па	бой	цальной и V _x , л	, M	L ₀ ,	∆Р _{полн} , Па	бой	цально йность и V _x , л	, M	L ₀ ,	∆Р _{полн} , Па	бой	цально йносты и V _x , л	, M	L ₀ ,	∆Р _{полн} , Па	бой	цально іность и V _x , л	, M
		Wt / -1	Ha	0,2	0,5	0,75	Wt / -1	Ha	0,2	0,5	0,75	Wt / -1	Ha	0,2	0,5	0,75	/VI / -I	Πα	0,2	0,5	0,75
250 × 250	1	105	24	14	5,6	3,7	205	64	23	9,1	6,1	225	170	37	15	10	440	293	49	20	13
350×350	2	125	24	5,6	2,2	1,5	205	04	9,1	3,7	2,4	335	170	15	6	4	440	293	20	7,8	5,2
450 × 450	1	175	15	15	5,9	3,9	285	39	24	10	6,4	460	101	39	15	10	600	172	50	20	13
430 ^ 430	2	1/3	13	5,9	2,3	1,6	203	39	10	3,8	2,5	400	101	15	6,2	4,1	600	1/2	20	8	5,4
595 × 595	1	320	10	18	7,1	4,8	540	28	30	12	8	960	77	50	20	13	1200	136	67	27	18
393 × 595	2	320	10	7,1	2,9	1,9	340	20	12	4,8	3,2	900	//	20	8	5,4	1200	130	27	11	7,1



% открытия	100%	70%	50%
регулятора расхода	β=0°	β=45°	β=60°
K	1,1	1,7	


Схемы поворота сопловых ячеек, при формировании различных видов приточных струй

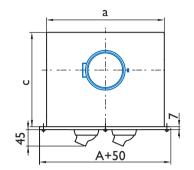
1-сторонняя компактная (1)

Воздухораспределительные устройства

Воздухораспределители панельные 2ВПС, 2ВПСР

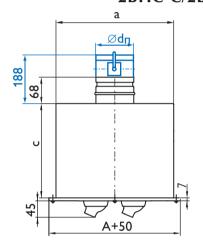
Воздухораспределители панельные 2ВПС, 2ВПСР предназначены для применения в системах вентиляции и кондиционирования помещений общественного и производственного назначения больших объемов и или с высокими потолками (концертные, спортивные, выставочные залы, стадионы, торговые комплексы, производственные цеха, вокзалы, ангары и т.п.), где необходимо обеспечить раздачу воздуха с высокой дальнобойностью.

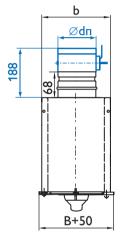
Конструктивно воздухораспределители 2ВПС, 2ВПСР состоят из воздухораздающей панели прямоугольной формы, в которой установлены поворотные сопловые ячейки, и камеры статического давления (КСД) с подводящим патрубком круглого сечения. Сопловые ячейки можно поворачивать в диапазоне ±30° в любом направлении от оси. При повороте сопел параллельно в одну сторону на определенный угол от геометрической оси панели (положение 1) отдельные струи и суммарный воздушный поток отклоняются на тот же угол. При этом дальнобойность потока не изменяется. При повороте сопел на угол 30° в разные стороны от геометрической оси (положение 2) направление суммарного потока остается неизменным, а его дальнобойность уменьшается в 2,5 раза. Потери давления (аэродинамическое сопротивление) остаются постоянными при любом положении сопел.


КСД имеет боковой или торцевой подвод и обеспечивает равномерное истечение воздуха из воздухораспределителя. Для изменения и регулирования расхода воздуха воздухораспределители 2ВПСР дополнительно оснащаются регулятором расхода воздуха, установленным в подводящем патрубке КСД.


Воздухораспределители 2ВПС, 2ВПСР устанавливаются на отводах круглых воздуховодов при открытой прокладке воздуховодов или встраиваются в подвесные потолки или стеновые панели. Монтаж к воздуховоду осуществляется с помощью самонарезающих винтов. Герметичность соединения с подводящим воздуховодом обеспечивается резиновым уплотнением.

Панель изготавливается из стали и окрашивается методом порошкового напыления в белый цвет (RAL 9016), ячейки — пластик белого цвета, КСД — неокрашенная оцинкованная сталь. При изготовлении на заказ возможна окраска панели и КСД в любой цвет по каталогу RAL и окраска ячеек по каталогу "Эксклюзив" (см. Приложение 2 на стр. 668).




2ВПС/2ВПСР

2ВПС-С/2ВПСР-С

Регулятор расхода воздуха

Характеристики воздухораспределителей 2ВПС, 2ВПСР

Размер	5 2		л∕ кол-во убков	a,	b,		C, IM	g,			ес, «г	
A×B, mm	F ₀ , M ²	2ВПС/ 2ВПСР	2ВПС-С/ 2ВПСР-С	MM	мм	2ВПС/ 2ВПСР	2ВПС-С/ 2ВПСР-С	мм	2ВПС	2ВПСР	2ВПС-С	2ВПСР-С
					Од	норядны	e					
300 × 150		159/1	124/1	313	185	350	200	210	3,8	4,6	2,8	3,3
400 × 150	0,0019	159/1	124/1	413	185	350	200	210	4,6	5,4	3,4	3,9
500 × 150	0,0025	199/1	124/1	513	185	390	200	230	5,8	6,8	4,0	4,6
600 × 150	0,0031	199/1	124/2	613	185	390	200	230	6,7	7,6	4,7	5,9
700 × 150	0,0037	199/1	124/2	713	185	390	200	230	7,6	8,5	5,4	6,6
800 × 150	0,0043	159/2	124/2	813	185	350	200	210	8,1	9,6	6,0	7,2
300 × 200	0,0012	159/1	159/1	313	233	350	240	210	4,3	5,1	3,5	4,2
400 × 200	0,0019	159/1	159/1	413	233	350	240	210	5,2	6,0	4,2	4,9
500 × 200	0,0025	199/1	159/1	513	233	390	240	230	6,5	7,4	4,9	5,6
600 × 200	0,0031	159/2	159/2	613	233	350	240	210	7,3	8,7	5,9	7,4
700 × 200	0,0037	159/2	159/2	713	233	350	240	210	8,2	9,6	6,6	8,1
800 × 200	0,0043	199/2	159/2	813	233	390	240	230	9,6	11,5	7,4	8,8
					Д	вухрядные						
300 imes 300	0,0025	199/1	199/1	313	333	390	300	230	5,7	6,6	4,8	5,7
400 × 300	0,0037	199/1	199/1	413	333	390	300	230	6,7	7,6	5,7	6,7
500 × 300	0,0050	199/1	199/1	513	333	390	300	230	7,8	8,7	6,6	7,5
600 × 300	0,0062	199/2	199/2	613	333	390	300	230	9,1	10,9	7,8	9,6
700 × 300	0,0074	199/2	199/2	713	333	390	300	230	10,2	12,0	8,7	10,5
800 × 300	0,0087	199/2	199/2	813	333	390	300	230	11,1	13,0	9,5	11,3
1000 × 300	0,0110	199/2	199/2	1013	333	390	300	230	13,3	15,1	11,3	13,1

Данные для подбора воздухораспределителей 2BПС, 2BПСР при подаче воздуха

1 – компактная струя (оси всех сопел расположены параллельно), 2 – коническая струя (оси сопел направлены под углом 30° в разные стороны от центра воздухораспределителя)

			L _{wA} =	= 20 д	Б(А)			L _{wA} =	= 35 д	Б(А)			L _{wA} =	=45 д	Б(А)			L _{wA} =	=50 д	Б(А)	
Размер А×В, мм	Вид струи	L ₀ , м ³ /ч	∆Р _{полн} , Па	бой пр	ально іності и V _x , л	, M	L ₀ , м³/ч	ΔР _{полн} , Па	боі пр	цально іность и V _x , л	, M Λ/C	L ₀ , м ³ /ч	ΔР _{полн} , Па	боі пр	цальной и V _x , л	ь, м м/с	L ₀ , м ³ /ч	ΔР _{полн} , Па	бой пр	цально іность и V _x , л	ь, м м/с
				0,2	0,5	0,75			0,2	0,5	0,75			0,2	0,5	0,75			0,2	0,5	0,75
	1			9,6	3,8	2,6			Одн 14	орядн 5,8	з ,8			20	8,2	5,5			23	9,1	6,1
300 × 150	2	40	49	3,8	1,5	1,0	60	110	5,8	2,3	1,5	85	221	8,2	3,3	2,2	95	276	9,1	3,7	2,4
400 480	1		4.1	11	4,2	2,8	00	110	17	6,9	4,6	105	212	24	9,6	6,4	1.10	267	27	11	7,1
400 × 150	2	55	41	4,2	1,7	1,1	90	110	6,9	2,8	1,8	125	213	9,6	3,8	2,5	140	267	11	4,3	2,9
500 × 150	1	75	43	13	5,0	3,3	115	101	19	7,7	5,1	165	208	28	11	7,3	190	276	32	13	8,4
300 / 130	2	, 3	13	5,0	2,0	1,3	113	101	7,7	3,1	2,0	103	200	11	4,4	2,9	130	270	13	5,1	3,4
600 × 150	1	95	44	14	5,7	3,8	140	96	21	8,4	5,6	200	196	30	12	8,0	240	282	36	14	9,6
	2			5,7 15	2,3 6,0	1,5 4,0			8,4 23	3,4 9,0	2,2 6,0			12 33	4,8 13	3,2 8,8			14 40	5,7 16	3,8
700 × 150	2	110	41	6,0	2,4	1,6	165	93	9,0	3,6	2,4	240	196	13	5,3	3,5	290	286	16	6,4	4,2
	1			17	6,6	4,4			24	9,7	6,4			36	14	9,5			43	17	12
800 × 150	2	130	42	6,6	2,6	1,8	190	90	9,7	3,9	2,6	280	196	14	5,7	3,8	340	289	17	6,9	4,6
300 × 200	1	40	49	9,6	3,8	2,6	60	110	14	5,8	3,8	85	221	20	8,2	5,5	95	276	23	9,1	6,1
300 ^ 200	2	40	49	3,8	1,5	1,0	00	110	5,8	2,3	1,5	03	221	8,2	3,3	2,2	93	270	9,1	3,7	2,4
400 × 200	1	55	41	11	4,2	2,8	90	110	17	6,9	4,6	125	213	24	9,6	6,4	140	267	27	11	7,1
	2			4,2	1,7	1,1			6,9	2,8	1,8			9,6	3,8	2,5			11	4,3	2,9
500 × 200	2	75	43	13 5,0	5,0 2,0	3,3 1,3	115	101	19 7,7	7,7 3,1	5,1 2,0	165	208	28 11	11 4,4	7,3 2,9	190	276	32 13	13 5,1	3,4
	1			14	5,7	3,8			21	8,4	5,6			30	12	8,0			36	14	9,6
600 × 200	2	95	44	5,7	2,3	1,5	140	96	8,4	3,4	2,2	200	196	12	4,8	3,2	240	282	14	5,7	3,8
700 > 200	1	110	41	15	6,0	4,0	165	0.2	23	9,0	6,0	240	100	33	13	8,8	200	206	40	16	11
700×200	2	110	41	6,0	2,4	1,6	165	93	9,0	3,6	2,4	240	196	13	5,3	3,5	290	286	16	6,4	4,2
800 × 200	1	130	42	17	6,6	4,4	190	90	24	9,7	6,4	280	196	36	14	9,5	340	289	43	17	12
000 // 200	2	130		6,6	2,6	1,8	130	30	9,7	3,9	2,6	200	130	14	5,7	3,8	3.0	203	17	6,9	4,6
	4			4.2	F 0	2.2				хрядн	I			20	4.4	7.2			2.2	12	0.4
300 × 300	2	75	43	13 5,0	5,0 2,0	3,3 1,3	115	101	19 7,7	7,7 3,1	5,1 2,0	165	208	28 11	11 4,4	7,3	190	276	32 13	13 5,1	3,4
	1			15	6,0	4,0			23	9,0	6,0			33	13	8,8			40	16	11
400 × 300	2	110	41	6,0	2,4	1,6	165	93	9,0	3,6	2,4	240	196	13	5,3	3,5	290	286	16	6,4	4,2
F00 × 200	1	1.45	40	17	6,8	4,6	210	0.4	25	9,9	6,6	220	100	38	15	10	200	276	45	18	12
500 × 300	2	145	40	6,8	2,7	1,8	210	84	9,9	4,0	2,6	320	196	15	6,0	4,0	380	276	18	7,2	4,8
600 × 300	1	180	40	19	7,6	5,1	265	86	28	11	7,5	380	177	40	16	11	460	259	49	20	13
300 / 300	2	100	10	7,6	3,0	2,0	200	30	11	4,5	3,0	300	177	16	6,4	4,3	100	233	20	7,8	5,2
700 × 300	1	200	34	19	7,7	5,2	310	82	30	12	8,0	450	172	44	17	12	540	248	52	21	14
	2			7,7	3,1	2,1			12	4,8	3,2			17	7,0	4,6			21	8,4	5,6
800 × 300	2	230	33	21 8,2	8,2 3,3	5,5 2,2	350	77	31 13	13 5,0	8,3 3,3	530	176	47 19	7,6	13 5,1	620	240	55 22	22 8,9	15 5,9
	1			22	8,8	5,9			34	14	9,0			50	20	13			60	24	16
1000×300	2	280	30	8,8	3,5	2,4	430	70	14	5,4	3,6	640	155	20	8,1	5,4	760	218	24	9,6	6,4

$\Delta P_{\text{\tiny полн}}^{\text{\tiny 2BПCP}} = K \times \Delta P_{\text{\tiny полн}}$

% открытия	100%	70%	50%
регулятора расхода	β=0°	β=45°	β=60°
K	1,1	1,7	3,5

Воздухораспределители панельные **1ВПТ. 1ВПТР**

Воздухораспределители панельные 1ВПТ, 1ВПТР предназначены для подачи воздуха системами вентиляции и кондиционирования закрученными струями в верхнюю зону, а также непосредственно в обслуживаемую зону помещений общественного и производственного назначения.

Преимуществом воздухораспределителей 1ВПТ, 1ВПТР является возможность обеспечить интенсивное перемешивание приточного воздуха с окружающим, которое происходит на сравнительно коротком участке и сопровождается резким падением скоростей и выравниванием температуры в воздушном потоке.

Конструктивно воздухораспределители 1ВПТ, 1ВПТР состоят из воздухораздающей панели прямоугольной формы, в которой установлены поворотные турбулизирующие ячейки, и камеры статического давления (КСД) с подводящим патрубком круглого сечения. Индивидуальная настройка угла поворота каждой ячейки предоставляет широкие возможности в выборе вариантов распределения воздуха и видов формируемых воздушных струй без изменения уровня шума, объёма подаваемого воздуха и без потери давления. Наиболее интересными из возможных видов струй, формируемых воздухораспределителями, являются настилающаяся, закрученная и комбинированная струи.

Настилающаяся струя, формируемая 1ВПТ, 1ВПТР, дальнобойна и может быть реализована различными способами. Поворотом ячеек струя может быть направлена в одну, две, три или четыре стороны. Таким образом, 1ВПТ/1ВПТР может применяться и как центральный, и как угловой, и как односторонний воздухораспределитель, что позволяет реализовать требуемую систему воздухораспределения одним видом изделий, не внося во внешнее оформление помещения беспорядочного многообразия.

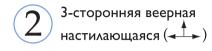
Закрученная струя позволяет раздать в помещении большой объем воздуха на минимальном расстоянии от рабочей зоны, не создавая сквозняков.

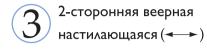
Комбинированной струёй один воздухораспределитель 1ВПТ, 1ВПТР обеспечивает требования по объёму воздуха всего помещения (настилающийся поток) и, в тоже время, может подавать часть воздуха в локальную рабочую зону (центральный вертикальный поток). Долевое отношение воздуха в вертикальной и настилающейся струе может варьироваться по желанию пользователя.

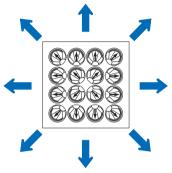
КСД имеет боковой или торцевой подвод и обеспечивает равномерное истечение воздуха из воздухораспределителя. Для изменения и регулирования расхода воздуха воздухораспределители 1ВПТР дополнительно оснащаются регулятором расхода воздуха, установленным в подводящем патрубке КСД.

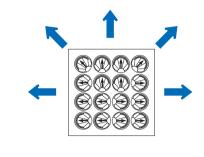
Воздухораспределители 1ВПТ, 1ВПТР устанавливаются на отводах круглых воздуховодов при открытой прокладке воздуховодов или встраиваются в подвесные потолки. Монтаж к воздуховоду осуществляется с помощью самонарезающих винтов. Герметичность соединения с подводящим воздуховодом обеспечивается резиновым уплотнением.

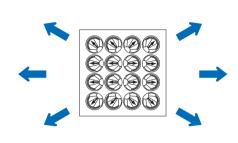
Панель изготавливается из стали и окрашивается методом порошкового напыления в белый цвет (RAL 9016), ячейки - пластик белого цвета, КСД - неокрашенная оцинкованная сталь. При изготовлении на заказ возможна окраска панели и КСД в любой цвет по каталогу RAL и окраска ячеек по каталогу "Эксклюзив" (см. Приложение 2 на стр. 668).

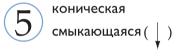


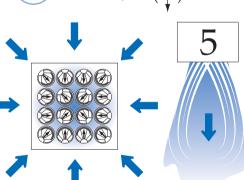


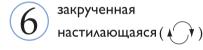


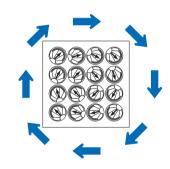

Схемы поворота турбулизирующих ячеек, при формировании различных видов приточных струй

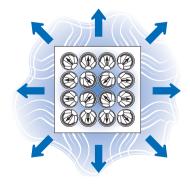


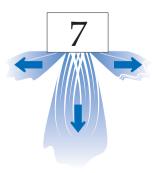


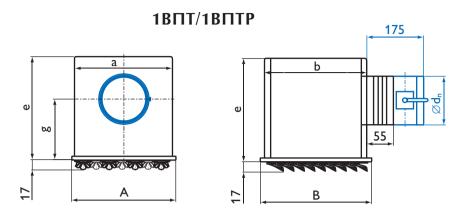




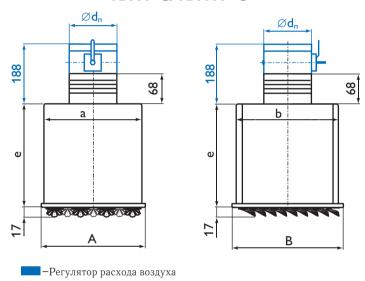







7.1 – коническая смыкающаяся ();

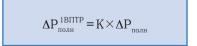
7.2 – веерная настилающаяся (→ →)



1ВПТ-С/1ВПТР-С

Характеристики воздухораспределителей 1ВПТ, 1ВПТР

		-	' '/			•		
Размер	F ₀ ,	Ød₁,	a,	b,	e,	g,		ec,
$A \times B$, mm	M ²	MM	MM	ММ	MM	MM	ŀ	Г
		1B	ПТ/1ВПТР				1ВПТ	1ВПТР
300 imes 300	0,027	124	270	270	270	150	3,7	4,3
450 × 450	0,079	159	420	420	350	213	7,3	8,0
595 × 595	0,147	199	570	570	390	233	11,7	12,6
900 × 900	0,375	314	870	870	650	430	28,1	29,6
460 × 210	0,033	99	430	180	300	193	4,3	4,7
540 × 210	0,039	124	510	180	325	205	5,1	5 <i>,7</i>
540 × 270	0,051	159	510	240	360	223	6,3	7,0
900 × 595	0,236	249	870	570	650	465	21,9	23,0
1195 × 595	0,323	314	1170	570	650	430	27,5	29,0
		1ВП	Т-С/1ВПТР-С				1ВПТ-С	1ВПТР-С
300 imes 300	0,027	124	270	270	200	_	3,2	3,8
450 × 450	0,079	159	420	420	200	_	5,8	6,5
595 × 595	0,147	199	570	570	200	_	9,3	10,1
900 × 900	0,375	314	870	870	300	_	20,6	22,1
460 × 210	0,033	99	430	180	200	_	3,6	3,9
540 × 210	0,039	124	510	180	200	_	4,0	4,6
540 × 270	0,051	159	510	240	200	_	4,7	5,4


Воздухораспределительные

устройства

Данные для подбора воздухораспределителей 1ВПТ при подаче воздуха настилающимися веерными струями

1 – четырехсторонними, 2 – трехсторонними, 3 – двухсторонними, 4 – односторонними

			L _{wA} = 25	5 дБ (А)			L _{wA} = 3	5 дБ(А)			L _{wA} = 45	5 дБ (А)		L _{wA} = 60 дБ(А)			
Размер А×В, мм	Вид струи	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- сть, м / _x , м/с	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- сть, м / _x , м/с	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- сть, м / _x , м/с	L ₀ , м ³ /ч	ΔР _{полн} , Па	бойно	ьно- сть, м / _{x,} м/с
				0,2	0,5			0,2	0,5			0,5	0,75			0,5	0,75
	1			1,0	0,4			1,2	0,5			0,7	0,5			1,2	0,8
300 × 300	2	130	32	1,3	0,5	160	49	1,6	0,6	220	92	0,9	0,6	410	320	1,7	1,1
300 / 300	3	130	32	1,6	0,7	100	49	2,0	0,8	220	92	1,1	0,7	410	320	2,1	1,4
	4			2,2	0,9			2,7	1,1			1,5	1,0			2,8	1,8
	1			1,3	0,5			1,7	0,7			1,0	0,7			1,7	1,1
450 × 450	2	280	24	1,7	0,7	390	46	2,3	0,9	550	92	1,3	0,9	940	268	2,2	1,5
100 // 100	3	200	27	2,1	0,8	330	10	2,9	1,2	330	32	1,6	1,1	340	200	2,8	1,9
	4			2,8	1,1			3,8	1,5			2,2	1,5			3,7	2,5
	1			1,5	0,6			2,1	0,8			1,3	0,8			2,2	1,4
595 × 595	2	450	18	2,0	0,8	650	37	2,8	1,1	900	71	1,6	1,0	1660	242	2,9	1,9
	3	150		2,4	1,0	030	37	3,5	1,4	300	, '	2,0	1,3	1000		3,6	2,4
	4			3,3	1,3			4,7	1,9			2,6	1,7			4,8	3,2
	1			2,1	0,8			2,9	1,1			1,6	1,1			2,8	1,9
900 × 900	2	1030	17	2,8	1,1	1400	31	3,8	1,5	2000	62	2,2	1,5	3440	185	3,7	2,5
	3			3,5	1,4			4,8	1,9		, , ,	2,7	1,8			4,7	3,1
	4			4,7	1,9			6,4	2,5			3,6	2,4			6,2	4,2
	1			1,0	0,4		1,2	0,5			0,7	0,5			1,0	0,6	
460 × 210	2	140	31	1,3	0,5	180	51	1,7	0,7	250	98	0,9	0,6	350	192	1,3	0,9
	3			1,6	0,6			2,1	0,8			1,2	0,8			1,6	1,1
	4			2,2	0,9			2,8	1,1			1,5	1,0			2,2	1,4
	1			0,9	0,4			1,3	0,5			0,8	0,5			1,3	0,9
540 × 210	2 3	150	25	1,3	0,5	210	48	1,8	0,7	300	98	1,0	0,7	520	296	1,7 2,2	1,2
	4			1,6 2,1	0,6 0,8			2,2 2,9	0,9 1,2			1,3 1,7	0,8			2,2	1,5 1,9
	1			1,0	0,6			1,5	0,6			0,9	1,1 0,6			1,4	0,9
	2			1,0	0,4			2,0	0,8			1,1	0,8			1,4	1,2
540 × 270	3	180	20	1,6	0,3	270	45	2,5	1,0	390	94	1,1	1,0	620	236	2,3	1,5
	4			2,2	0,7			3,3	1,3			1,4	1,0			3,0	2,0
	1			1,9	0,8			2,3	0,9			1,5	1,0			2,3	1,6
	2			2,6	1,0			3,1	1,2			1,9	1,0			3,1	2,1
900 × 595	3	750	21	3,2	1,3	900	31	3,9	1,5	1410	75	2,4	1,6	2270	195	3,1	2,6
	4			4,3	1,7			5,1	2,1			3,2	2,2			5,2	3,5
	1			2,0	0,8			2,7	1,1			1,5	1,0			2,8	1,9
	2							3,7	1,5			2,1	1,4			3,8	2,5
1195 × 595	3	900	18	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1050 05	4,6	1,8	1760 6	69	2,6	1,7	3200	229	4,7	3,1		
	4			4,4	1,8		33	6,1	2,4		09	3,4	2,3			6,3	4,2
	т			7,7	1,0			0,1	۲,٦			J,T	2,5			0,5	7,2

% открытия	100%	70% $\beta = 45^{\circ}$	50%
регулятора расхода	β=0°		β=60°
K	1,6	5,0	17,0

Данные для подбора воздухораспределителей 1ВПТ при подаче воздуха струями

5 – коническими, 6 – закрученными, 7 – комбинированными (7.1 – коническими смыкающимися, 7.2 – веерными настилающимися)

			L _{wA} = 2	5 дБ(А)			L _{wA} = 35	5 дБ(А)			$L_{wA} = 45$	дБ(A)		L _{wA} = 60 дБ(А)			
Размер А×В, мм	Вид струи	L ₀ , м ³ /ч	ΔР _{полн} , Па		ьно- сть, м / _x , м/с	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- сть, м / _x , м/с	L ₀ , м ³ /ч	ΔР _{полн} , Па		ьно- сть, м / _x , м/с	L ₀ , м ³ /ч			ьно- сть, м / _х , м/с
				0,2	0,5			0,2	0,5			0,5	0,75			0,5	0,75
	5			2,2	0,9			2,7	1,1			1,5	1,0			2,8	1,8
300 × 300	6	130	32	0,4	_	160	49	0,5	_	220	92	_	_	410	320	0,6	0,4
300 / 300	7-1	130	32	0,9	_	100	49	1,1	0,4	220	92	0,6	0,4	410	320	1,1	0,7
	7-2			0,7	_			0,8	_			0,4	_			0,8	0,6
	5			2,8	1,1			3,8	1,5			2,2	1,5			3,7	2,5
450 × 450	6	280	24	0,6	_	390	46	0,8	_	550	92	0,4 –	940	268	0,7	0,5	
100	7-1	200		1,1	0,4	330	10	1,5	0,6	330	72	0,9	0,6	340	200	1,5	1,1
	7-2			0,8	_			1,2	0,5			0,7	0,4			1,1	0,7
	5			3,3	1,3			4,7	1,9			2,6	1,7			4,8	3,2
595 × 595	6	450	18	0,7	_	650	37	0,9	0,4	900	71	0,5	_	1660	242	1,0	0,6
	7-1			1,3	0,5			1,9	0,8			1,0	0,7			1,9	1,3
	7-2			1,0	0,4			1,4	0,6			0,8	0,5			1,4	1,0
	5			4,7	1,9			6,4	2,5			3,6	2,4			6,2	4,2
900 × 900	6 7-1	1030	17	0,9	- 7	1400 31	1,3	0,5	2000	62	0,7	0,5	3440	185	1,2	0,8	
	7-1 7-2			1,9 1,4	0,7			2,5 1,9	1,0 0,8			1,5 1,1	1,0 0,7			2,5 1,9	1,7 1,2
	5			2,2	0,6			2,8	1,1			1,1	1,0			2,2	1,4
	6			0,4	- -			0,6		250		- -	1,0			0,4	0,3
460 × 210	7-1	140	31	0,9		180	51	1,1	0,4		98	0,6	0,4	350	192	0,9	0,6
	7-2			0,6	_			0.8	0,1			0.5	_			0,6	0,4
	5			2,1	0,8			2,9	1,2			1,7	1,1			2,9	1,9
	6			0,4	_			0,6	_			_	_			0,6	0,4
540×210	7-1	150	25	0,8	_	210	48	1,2	0,5	300	98	0,7	0,4	520	296	1,2	0,8
	7-2			0,6	_			0,9	0,4			0,5	_			0,9	0,6
	5			2,2	0,9			3,3	1,3			1,9	1,3			3,0	2,0
- 40 0 - 0	6			0,4	_			0,7	_			0,4	_			0,6	0,4
540 × 270	<i>7</i> -1	180	20	0,9	0,4	270	45	1,3	0,5	390	94	0,8	0,5	620	236	1,2	0,8
	7-2			0,7	_			1,0	0,4			0,6	0,4			0,9	0,6
	5			4,3	1,7			5,1	2,1			3,2	2,2			5,2	3,5
900 × 595	6	750	21	0,9	_	000	2.1	1,0	_	1.110	7-	0,6	_	2270	105	1,0	0,7
300 \ 333	<i>7</i> -1	750	21	1,7	0,7	900	31	2,1	0,8	1410	75	1,3	0,9	2270	195	2,1	1,4
	7-2			1,3	0,5			1,5	0,6			1,0	0,6			1,6	1,0
	5			4,4				6,1	2,4			3,4	2,3			6,3	4,2
1195 × 595	6	900	18	0,9	_	1250	2.5	1,2	0,5	1760	60	0,7	0,5	3200	229	1,3	0,8
1199 / 393	<i>7</i> -1	900	10	1,8	0,7	1230	35	2,4	1,0	1760	69	1,4	0,9	3200	229	2,5	1,7
	7-2			1,3	0,5			1,8	0,7			1,0	0,7			1,9	1,3

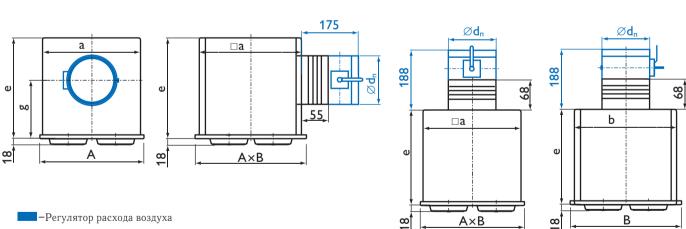
$\Delta P_{\text{полн}}^{\text{1BПТР}} = K \times \Delta P_{\text{полн}}$

% открытия	100%	70%	50%
регулятора расхода	β=0°	β=45°	β=60°
K	1,6	5,0	

Воздухораспределители панельные ВПМ, ВПМР

Воздухораспределители панельные ВПМ, ВПМР предназначены для подачи воздуха системами вентиляции, воздушного отопления и кондиционирования в верхнюю зону, а также непосредственно в рабочую зону помещений различного назначения (общественные, производственные).

Конструктивно воздухораспределители ВПМ, 1ВПМР состоят из воздухораздающей панели прямоугольной формы, в которой установлены веерные диффузоры, и камеры статического давления (КСД) с подводящим патрубком круглого сечения. Конструкция воздухораспределителей позволяет производить индивидуальное регулирование направления потока и аэродинамических характеристик путем перемещения вставок веерных диффузоров: при перемещении вставок изменяется форма потока от веерного до конического, что позволяет производить посезонное регулирование системы воздухораспределения.


КСД имеет боковой или торцевой подвод и обеспечивает равномерное истечение воздуха из воздухораспределителя. Для изменения и регулирования расхода воздуха воздухораспределители 1ВПМР дополнительно оснащаются регулятором расхода воздуха, установленным в подводящем патрубке КСД.

Воздухораспределители 1ВПМ, 1ВПМР устанавливаются на отводах круглых воздуховодов при открытой прокладке воздуховодов или встраиваются в подвесные потолки. Монтаж к воздуховоду осуществляется с помощью самонарезающих винтов. Герметичность соединения с подводящим воздуховодом обеспечивается резиновым уплотнением.

Панель изготавливается из стали и окрашивается методом порошкового напыления в белый цвет (RAL 9016), диффузоры — пластик белого цвета, КСД — неокрашенная оцинкованная сталь. При изготовлении на заказ возможна окраска панели и КСД в любой цвет по каталогу RAL.

ВПМ/ВПМР

ВПМ-С/ВПМР-С

Характеристики воздухораспределителей ВПМ, ВПМР

Размер А×В, мм	F ₀ , M ²	Ød₁, MM	а, мм	b, мм	е, мм	g, MM		ес, «г
·		ВІ	ТМ 125/ВПМР	125			ВПМ 125	ВПМР 125
450 × 450	0,044	159	420	420	350	213	7,8	8,5
595 × 595	0,099	199	570	570	390	233	12,8	13,7
900 × 595	0,165	249	870	570	650	465	23,7	24,8
1195 × 595	0,198	314	1170	570	650	430	29,7	31,2
900 × 900	0,275	314	870	870	650	430	31,2	32,7
		ВПЛ	1 125-С/ВПМР	125-C			ВПМ 125-С	ВПМР 125-С
450 × 450	0,044	159	420	420	200	_	6,3	7,0
595 × 595	0,099	199	570	570	200	_	10,3	11,2
900 × 900	0,275	314	870	870	300	_	23,7	25,2
		BI	ТМ 160/ВПМР	160			ВПМ 160	ВПМР 160
450 × 450	0,074	159	420	420	350	213	8,1	8,8
595 × 595	0,092	199	570	5 <i>7</i> 0	390	233	12,7	13,5
900 × 595	0,147	249	870	5 <i>7</i> 0	650	465	23,7	24,8
1195 × 595	0,184	314	1170	570	650	430	29,5	31,0
900 × 900	0,239	314	870	870	650	430	30,7	32,2
		ВПЛ	1 160-С/ВПМР	160-C			ВПМ 160-С	ВПМР 160-С
450 × 450	0,074	159	420	420	200	_	6,6	7,3
595 × 595	0,092	199	570	570	200	_	10,2	11,1
900 × 900	0,239	314	870	870	300	_	23,3	24,7

Данные для подбора воздухораспределителей ВПМ 125, ВПМР 125 при подаче воздуха

			L _{wA} = 2	5 дБ (А)			L _{wA} :	=35 дІ	5(A)			$L_{wA} = 45$	дБ(A)		L _{wA} = 60 дБ(А)					
Размер А×В, мм	N*	L ₀ ,	∆Р _{полн} , Па	ان' سر	ьно- сть, м / _x , м/с	L ₀ , м ³ /ч	∆Р _{полн} , Па	бо	∆ально йность ои V _x , м	, м	L ₀ ,	LU, A HOAH,		LU, AI HOAH,		ьно- ость, м / _x , м/с	L ₀ , м ³ /ч	∆Р _{полн} , Па	Дально- бойность, м при V _x , м/с	
		,		0,2	0,5	, -	114	0,2	0,5	0,75	,		0,5	0,75		- 14	0,5	0,75		
	Горизонтальная настилающаяся веерная струя (b = 6 мм)																			
450 × 450	6	150	7	0,7	0,3	210	14	1,0	0,4	0,3	320	32	0,6	0,4	650	131	1,2	0,8		
595 × 595	6	300	8	0,9	0,4	430	16	1,3	0,5	0,4	640	36	0,8	0,5	1270	142	1,6	1,0		
900 × 595	6	450	8	1,1	0,4	660	16	1,6	0,6	0,4	970	36	0,9	0,6	1850	129	1,8	1,2		
1195 × 595	6	520	6	1,1	0,5	780	13	1,7	0,7	0,5	1100	25	1,0	0,6	2250	106	2,0	1,3		
900 × 900	6	700	8	1,3	0,5	1000	16	1,9	0,7	0,5	1500	35	1,1	0,7	2800	122	2,1	1,4		
					В	ертика	льная і	кониче	ская с	труя (b	=12 M	и)								
450 × 450	12	150	7	1,3	0,5	210	14	1,8	0,7	0,5	320	32	1,1	0,7	650	131	2,2	1,5		
595 × 595	12	300	8	1,7	0,7	430	16	2,5	1,0	0,7	640	36	1,5	1,0	1270	142	2,9	1,9		
900 × 595	12	450	8	2,0	0,8	660	16	2,9	1,2	0,8	970	36	1,7	1,1	1850	129	3,3	2,2		
1195 × 595	12	520	6	2,1	0,8	780	13	3,2	1,3	0,8	1100	25	1,8	1,2	2250	106	3,7	2,4		
900 × 900	12	700	8	2,4	1,0	1000	16	3,4	1,4	0,9	1500	35	2,1	1,4	2800	122	3,9	2,6		

^{*} N — количество оборотов центральной вставки против часовой стрелки, вращение осуществляется из положения заподлицо с корпусом.

% открытия	100%	70%	50%
регулятора расхода	β=0°	β=45°	β=60°
K	1.6	5.0	17.0

Данные для подбора воздухораспределителей ВПМ 160, ВПМР 160 при подаче воздуха

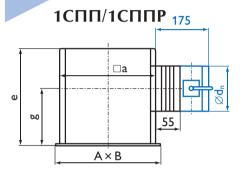
			$L_{wA} = 2$	дБ(A)			L _{wA}	= 35 дІ	5(A)			$L_{wA} = 45$	дБ(А))	$L_{wA} = 60$ дБ(A)			
Размер А×В, мм	N*	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- сть, м / _x , м/с	L ₀ , м ³ /ч	∆Р _{полн} , Па	бо	∆ально йность ои V _× , <i>м</i>	, M	L ₀ ,	∆Р _{полн} , Па	Дально- , бойность, м при V _x , м/с		L ₀ , м ³ /ч	∆Р _{полн} , Па	Дально- бойность, м при V_x , м/с	
		,,,,	114	0,2	0,5	144 / 1		0,2	0,5	0,75	/VI / ~I	114	0,5	0,75	,,,,	. 74	0,5	0,75
	Горизонтальная настилающаяся веерная струя (b=8 мм)																	
450 × 450	6,5	220	15	0,8	0,3	380	45	1,4	0,5	0,4	600	112	0,9	0,6	940	274	1,3	0,9
595 × 595	6,5	260	6	0,8	0,3	470	19	1,5	0,6	0,4	650	37	0,8	0,6	1200	127	1,5	1,0
900 × 595	6,5	350	5	0,9	0,4	700	19	1,8	0,7	0,5	1000	38	1,0	0,7	1700	109	1,7	1,1
1195 × 595	6,5	450	4	1,0	0,4	800	13	1,8	0,7	0,5	1100	25	1,0	0,7	2100	92	1,9	1,3
900 × 900	6,5	550	5	1,1	0,4	950	14	1,9	0,8	0,5	1500	35	1,2	0,8	2700	114	2,1	1,4
					Ве	ертика	льная к	ониче	ская с	груя (b	= 16 м	м)						
450 × 450	13	220	15	1,5	0,6	380	45	2,5	1,0	0,7	600	112	1,6	1,1	940	274	2,5	1,7
595 × 595	13	260	6	1,6	0,6	470	19	2,8	1,1	0,7	650	37	1,5	1,0	1200	127	2,9	1,9
900 × 595	13	350	5	1,6	0,7	700	19	3,3	1,3	0,9	1000	38	1,9	1,3	1700	109	3,2	2,1
1195 × 595	13	450	4	1,9	0,8	800	13	3,4	1,3	0,9	1100	25	1,9	1,2	2100	92	3,5	1,4
900 × 900	13	550	5	2,0	0,8	950	14	3,5	1,4	0,9	1500	35	2,2	1,5	2700	114	4,0	2,7

^{*} N — количество оборотов центральной вставки против часовой стрелки, вращение осуществляется из положения заподлицо с корпусом.

$$\Delta P_{\text{полн}}^{\text{BПМР 160}} = K \times \Delta P_{\text{полн}}$$

% открытия регулятора расхода	100% β=0°	70% $\beta = 45^{\circ}$	50% β=60°
K	1.6	5.0	17.0

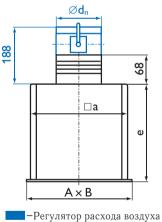
Воздухораспределители панельные 1СПП, 1СППР


Воздухораспределители панельные 1СПП, 1СППР предназначены для подачи воздуха системами вентиляции и кондиционирования в помещения общественного и производственного назначения вертикальными или горизонтальными потоками.

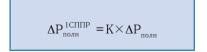
Конструктивно воздухораспределители 1СПП, 1СППР состоят из воздухораздающей перфорированной панели прямоугольной формы и камеры статического давления (КСД) с подводящим патрубком круглого сечения. КСД имеет боковой или торцевой подвод и обеспечивает равномерное истечение воздуха из воздухораспределителя. Для изменения и регулирования расхода воздуха воздухораспределители 1СППР дополнительно оснащаются регулятором расхода воздуха, установленным в подводящем патрубке КСД.

Воздухораспределители 1СПП, 1СППР устанавливаются на отводах круглых воздуховодов при открытой прокладке воздуховодов или встраиваются в подвесные потолки или стеновые панели. Монтаж к воздуховоду осуществляется с помощью самонарезающих винтов. Герметичность соединения с подводящим воздуховодом обеспечивается резиновым уплотнением.

Панель изготавливается из стали и окрашивается методом порошкового напыления в белый цвет (RAL 9016), КСД — неокрашенная оцинкованная сталь. При изготовлении на заказ возможна окраска панели и КСД в любой цвет по каталогу RAL.



Характеристики воздухораспределителей 1СПП, 1СППР


	Размер	F ₀ ,	Ød₁,	□a ,	e,	g,	B€	ec,	
	$A \times B$, mm	M^2	MM	MM	MM	MM	ı	(T	
			1СПП/1С	1СПП	1СППР				
	300 × 300	0,063	124	270	270	150	3,5	4,1	
	450 × 450	0,160	159	420	350	213	7,0	7,7	
	595 × 595	0,303	199	570	390	233	11,0	11,9	
Г		1	СПП-С/10	СППР-С			1СПП-С	1СППР-С	
Г	300 × 300	0,063	124	270	200	_	3,0	3,6	
	450 × 450	0,160	159	420	200	_	5,5	6,2	
	595 × 595	0,303	199	570	200	_	8,5	9,4	

1СПП-С/1СППР-С

Данные для подбора воздухораспределителей 1СПП при подаче воздуха

		L _{wA} ≤20	дБ(A)			$L_{wA} = 25$	дБ(A))		L _{wA}	=35 дІ	5(A)			$L_{wA} = 45 \text{ дБ}(A)$			
Размер А × В, мм	L ₀ , м ³ /ч	∆Р _{полн} , Па	△ IIOAH	Дально- бойность, м при V _x , м/с	L ₀ , ΔР _{полн} , м ³ /ч Па		∆Рполн, бойнос	Дально- ойность, м іри V _x , м/с		∆Р _{полн} , Па	бо	Дально- бойность, м при V _x , м/с		L ₀ ,	∆Р _{полн} , Па	FIDIA V AA/A		, м
			0,2	0,5	,,,,	- 100	0,2	0,5	м ³ /ч	114	0,2	0,5	0,75	W. / I	- 1	0,2	0,5	0,75
300 imes 300	100	7	1,2	0,5	140	14	1,6	0,7	180	23	2,1	0,8	0,6	260	48	3,0	1,2	0,8
450 × 450	230	12	1,7	0,7	300	21	2,2	0,9	420	42	3,1	1,2	0,8	600	84	4,4	1,7	1,2
595 × 595	400	11	2,1	0,9	530	19	2,8	1,1	740	36	3,9	1,6	1,0	1000	66	5,3	2,1	1,4

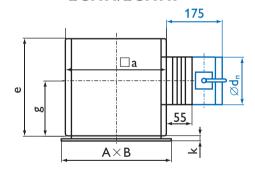
% открытия регулятора расхода	100% β=0°	70% β=45°	50% $\beta = 60^{\circ}$
K	1,7	7,0	20,0

Воздухораспределительные

устройства

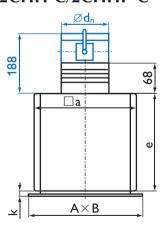
Воздухораспределители панельные 2СПП, 2СППР

Воздухораспределители панельные 2СПП, 2СППР предназначены для подачи воздуха системами вентиляции и кондиционирования в помещения общественного и производственного назначения комбинированными воздушными потоками.


Конструктивно воздухораспределители 2СПП, 2СППР состоят из воздухораздающей панели прямоугольной формы, выполненной с перфорацией по периметру и глухой центральной частью, и камеры статического давления (КСД) с подводящим патрубком круглого сечения. Между КСД и воздухораздающей панелью предусмотрены боковые воздуховыпускные щели. Часть приточного воздуха, выходящая через боковые щели, формирует горизонтальный настилающийся поток; часть воздуха, выходящая через отверстия в панели, образует вертикальный поток. Предусмотрена возможность перекрытия боковых воздуховыпускных щелей специальными заслонками, что позволяет сформировать вместо четырёхстороннего (все щели открыты) трёх-, двух- или односторонний настилающийся поток; при этом дальнобойность как горизонтального, так и вертикального потоков изменяется.

КСД имеет боковой или торцевой подвод и обеспечивает равномерное истечение воздуха из воздухораспределителя. Для изменения и регулирования расхода воздуха воздухораспределители 2СППР дополнительно оснащаются регулятором расхода воздуха, установленным в подводящем патрубке КСД.

Воздухораспределители 2СПП, 2СППР устанавливаются на отводах круглых воздуховодов при открытой прокладке воздуховодов или встраиваются в подвесные потолки. Монтаж к воздуховоду осуществляется с помощью самонарезающих винтов. Герметичность соединения с подводящим воздуховодом обеспечивается резиновым уплотнением.


Панель изготавливается из стали и окрашивается методом порошкового напыления в белый цвет (RAL 9016), КСД - неокрашенная оцинкованная сталь. При изготовлении на заказ возможна окраска панели и КСД в любой цвет по каталогу RAL.

$2C\Pi\Pi/2C\Pi\Pi P$

-Регулятор расхода воздуха

2СПП-С/2СППР-С

Характеристики воздухораспределителей 2СПП, 2СППР

Размер	F ₀ ,	Ød₁,	□a ,	k,	e,	g,	Ве	ec,
$A \times B$, mm	M^2	мм	ММ	мм	мм	мм	ŀ	(F
		2	СПП / 2СППР				2СПП	2СППР
300 imes 300	0,063	124	270	12	270	150	3,9	4,5
450 × 450	0,160	159	420	14	350	213	7,3	8,0
595 × 595	0,303	199	570	18	390	233	11,1	11,9
		2CI	ПП-С / 2СППР	-C			2СПП-С	2СППР-С
300 imes 300	0,063	124	270	12	200	_	3,4	4,0
450 × 450	0,160	159	420	14	200	_	5,8	6,5
595 × 595	0,303	199	570	18	200	_	8,6	9,5

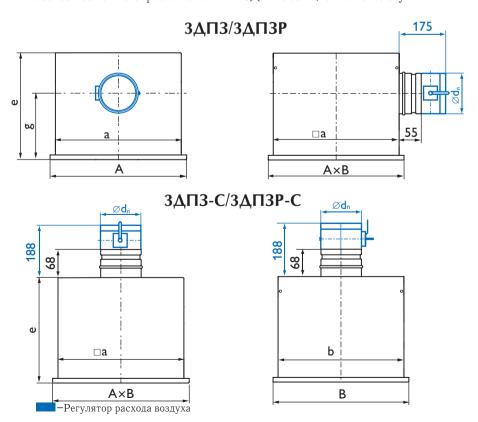
Данные для подбора воздухораспределителей 2СПП при подаче воздуха*

			L _{wA} = 25	5 дБ(A)				= 35 дБ				L_{wA}	=45 дБ	(A)		
Размер А × В, мм	Кол-во открытых щелей	L ₀ , м ³ /ч		ΔР _{полн} , Па	бойно	ьно- сть, м / _х , м/с	L ₀ , м ³ /ч	∆Р _{полн} , Па	бо	Дально- ойность, ри V _x , м	М	L ₀ , м ³ /ч	ΔР _{полн} , Па	бо	Дально- ойность, ри V _x , м	М
	,	/VL / -1	Πα	0,2	0,5	/VL / -1	Ha	0,2	0,5	0,75	Wt / 4	Πα	0,2	0,5	0,75	
	4			0,8	0,3			1,1	0,4	0,3			1,7	0,7	0,4	
300 × 300	3	110	9	1,0	0,4	150	16	1,3	0,5	0,4	230	37	2,0	0,8	0,5	
300 × 300	2	110		1,1	0,4	130	10	1,5	0,6	0,4	230	37	2,3	0,9	0,6	
	1			1,2	0,5			1,7	0,7	0,5			2,6	1,0	0,8	
	4			1,1	0,4			1,6	0,7	0,4			2,3	0,9	0,6	
450 × 450	3	240	14	1,3	1,3 0,5 350 29 2,0 0,9	0,9	0,5	500 59	59	2,8	1,1	0,7				
430 × 450	2	210		1,5	0,6	330	23	2,2	1,0	0,6	300		3,1	1,5	0,8	
	1			1,7	0,7			2,4	1,1	0,7			3,5	1,4	0,9	
595 × 595	4			1,2	0,5			1,9	0,7	0,5			3,0	1,2	0,8	
	3	360	9	1,5	0,6	570	21	2,3	0,9	0,6	900	54	3,7	1,5	1,0	
	2	3 30	9	1,6	0,7	370	21	2,6	1,0	0,7	300	34	4,1	1,6	1,1	
	1			1,8	0,7			2,9	1,1	0,8			4,6	1,8	1,2	

^{*} В таблице указаны наибольшие значения дальнобойности, соответствующие вертикальной части комбинированного потока, направленного вдоль геометрической оси панели. Другая часть приточного потока, истекающая через боковые щели и настилающаяся на потолок (4-, 3-, 2-, 1-сторонняя), имеет меньшую дальнобойность независимо от количества открытых щелей.

$$\Delta P_{\text{полн}}^{2\text{СППР}} = K \times \Delta P_{\text{полн}}$$

% открытия	100%	70%	50%
регулятора расхода	β=0°	β=45°	β=60°
K	1,7	7,0	20,0


Воздухораспределители панельные 3ДПЗ, 3ДПЗР

Воздухораспределители панельные ЗДПЗ, ЗДПЗР предназначены для подачи воздуха системами вентиляции и кондиционирования в изотермическом и неизотермическом режимах (нагрева и охлаждения) из верхней зоны помещений горизонтальными настилающимися закрученными струями. Вихревой режим течения приточного воздуха на выходе из воздухораспределителя позволяет повысить коэффициент эжекции окружающего воздуха к приточной струе по сравнению с прямоточными струями и, как следствие, увеличить интенсивность снижения скорости и выравнивания температуры в струе с температурой помещения. Воздухораспределители ЗДПЗ, ЗДПЗР рекомендуется применять в помещениях, где требуется повышенная кратность воздухообмена и избыточная температура приточного воздуха $\Delta t_0 \gg 5$ °C (производственные помещения, концертные и торговые залы, спортивные сооружения, вокзалы, аэропорты и т.д.). Также воздухораспределители ЗДПЗ, ЗДПЗР можно использовать и для удаления воздуха из помещений.

Конструктивно воздухораспределители ЗДПЗ, ЗДПЗР состоят из воздухораздающей панели прямоугольной формы, в центре которой диффузор с закручивающими лопатками, и камеры статического давления (КСД) с подводящим патрубком круглого сечения. КСД имеет боковой или торцевой подвод и обеспечивает равномерное истечение воздуха из воздухораспределителя. Для изменения и регулирования расхода воздуха воздухораспределители ЗДПЗР дополнительно оснащаются регулятором расхода воздуха, установленным в подводящем патрубке КСД.

Воздухораспределители ЗДПЗ, ЗДПЗР устанавливаются на отводах круглых воздуховодов при открытой прокладке воздуховодов или встраиваются в подвесные потолки, при этом обеспечивается настилание горизонтальной струи на потолок. Монтаж к воздуховоду осуществляется с помощью самонарезающих винтов. Герметичность соединения с подводящим воздуховодом обеспечивается резиновым уплотнением.

Панель окрашивается методом порошкового напыления в белый цвет (RAL 9016), КСД — неокрашенная оцинкованная сталь. При изготовлении на заказ возможна окраска панели и КСД в любой цвет по каталогу RAL.

Характеристики воздухораспределителей закручивающих ЗДПЗ, ЗДПЗР

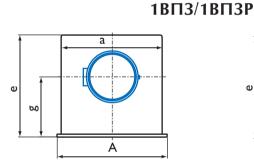
Размер А ×В, мм	F ₀ , м ²	а, мм	b, мм	е, мм	Ødn, мм	g, мм	Вес	, к г
			3ДПЗ/3ДПЗІ	•			3ДП3	3ДПЗР
450 × 450	0,114	420	420	350	199	211	7,3	8,1
595 × 595	0,181	570	570	390	249	231	11 <i>,7</i>	12,6
			здпз-с/здпзі	P-C			3ДП3-С	3ДПЗР-С
450 × 450	0,114	420	420	200	199	_	5,8	6,5
595 × 595	0,181	570	570	200	249	_	9,2	10,1

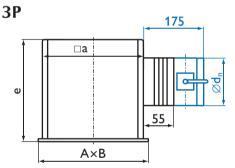
Данные для подбора воздухораспределителей ЗДПЗ при подаче воздуха горизонтальными настилающимися закрученными струями

		L _{wA} =	=25 дІ	Б(А)			L _{wA} =	=35 д	Б(А)		L _{wA} = 50 дБ(A)					$L_{wA} = 60$ дБ(A)								
Размер А×В, мм	L ₀ , м ³ /ч	.,			.,		,				бой	Дально- бойность, м при V_x , м/с M^3/V_y		∆Р _{полн} ,	7 mu V 11/0		L ₀ , ΔР _{полн} , м ³ /ч Па	Дально- бойность, м при V_x , м/с			L ₀ , $\Delta P_{полн}$, м ³ /ч Па		Дально- бойность, м при V_x , м/с	
		Πα	0,2	0,5	0,75	W / 4	1/4 IIa	0,2	0,5	0,75	Πα	0,2	0,5	0,75	W1 / 4	1 Ia		0,2	0,5	0,75				
450 × 450	200	9	1,2	0,5	0,3	300	20	1,8	0,7	0,5	600	81	3,7	1,5	1,0	970	211	6,0	2,4	1,6				
595 × 595	320	6	1,6	0,6	0,4	480	15	2,4	0,9	0,6	880	49	4,3	1,7	1,1	1300	107	6,4	2,6	1,7				

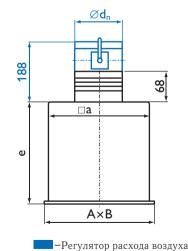
$$\Delta P_{\text{полн}}^{3Д\Pi 3P} = K \times \Delta P_{\text{полн}}$$

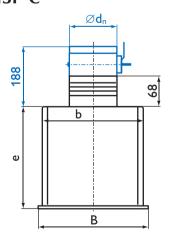
% открытия регулятора расхода	100% β=0°	70% β=45°	50% $\beta = 60^{\circ}$
K	1,7	7,0	20,0


Воздухораспределители панельные 1ВПЗ, 1ВПЗР


Воздухораспределители панельные 1ВПЗ, 1ВПЗР предназначены для подачи воздуха системами вентиляции и кондиционирования в верхнюю зону помещений различного назначения широким коническим потоком с интенсивным перемешиванием воздуха.

Конструктивно воздухораспределители 1ВПЗ, 1ВПЗР состоят из воздухораздающей панели прямоугольной формы, в которой установлены диффузоры с плосколопаточными закручивателями, и камеры статического давления (КСД) с подводящим патрубком круглого сечения. КСД имеет боковой или торцевой подвод и обеспечивает равномерное истечение воздуха из воздухораспределителя. Для изменения и регулирования расхода воздуха воздухораспределители 1ВПЗР дополнительно оснащаются регулятором расхода воздуха, установленным в подводящем патрубке КСД.


Воздухораспределители 1ВПЗ, 1ВПЗР устанавливаются на отводах круглых воздуховодов при открытой прокладке воздуховодов или встраиваются в подвесные потолки. Монтаж к воздуховоду осуществляется с помощью самонарезающих винтов. Герметичность соединения с подводящим воздуховодом обеспечивается резиновым уплотнением.


Панель изготавливается из стали и окрашивается методом порошкового напыления в белый цвет (RAL 9016), КСД — неокрашенная оцинкованная сталь. При изготовлении на заказ возможна окраска панели и КСД в любой цвет по каталогу RAL.

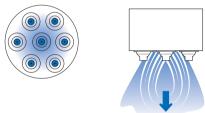
1ВП3-С/1ВП3Р-С

Характеристики воздухораспределителей 1ВПЗ, 1ВПЗР

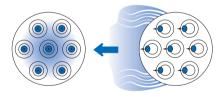
Размер	F ₀ ,	Ød₁,	a,	b,	e,	g,	Ве	ec,
$A\times B$, MM	M^2	MM	MM	мм	мм	мм	ŀ	(F
			1ВП3/1ВП3Р				1ВП3	1ВПЗР
450 × 450	0,024	159	420	420	350	210	8,9	9,6
595 × 595	0,042	199	570	570	390	230	14,5	15,3
900 × 595	0,063	249	870	570	650	465	26	27,1
1195 × 595	0,085	314	1170	570	650	430	36	37,4
900 × 900	0,095	314	870	870	650	430	34,5	35,9
			1ВП3-С/1ВП3Р	-C			1ВП3-С	1ВПЗР-С
450 × 450	0,024	159	420	420	200	_	7,4	8,1
595 × 595	0,042	199	570	570	200	_	12	12,9
900 × 900	0,095	314	870	870	300	_	27	28,5

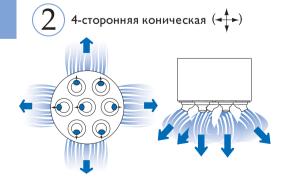
Данные для подбора воздухораспределителей 1BП3 при подаче воздуха

		L _{wA} = 25	дБ(A)			L _{wA}	= 35 дБ	(A)			L _{wA} = 45	дБ(A)		L _{wA} = 60 дБ(A)			
Размер А×В, мм	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- сть, м / _х , м/с	L ₀ , м ³ /ч	∆Р _{полн} , Па	бо	Δ ально йность он V_x , м	, м	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- сть, м / _{х, м} /с	L ₀ ,	∆Р _{полн} , Па	бойно	ьно- ость, м / _х , м/с
	, .		0,2	0,5	, -			0,5	0,75	, -		0,5	0,75	, -		0,5	0,75
450 × 450	90	10	1,9	0,7	150	27	3,1	1,2	0,8	200	48	1,6	1,1	420	213	3,5	2,3
595 × 595	150	8	2,3	0,9	240	20	3,7	1,5	1,0	320	35	2,0	1,3	670	154	4,2	2,8
900 × 595	210	6	2,7	1,1	320	15	4,1	1,6	1,1	460	30	2,3	1,6	930	122	4,7	3,2
1195 × 595	280	6	3,1	1,2	430	14	4,7	1,9	1,3	600	27	2,6	1,8	1050	85	4,6	3,1
900 × 900	300	6	3,1	1,2	460	13	4,8	1,9	1,3	660	26	2,7	1,8	1080	71	4,5	3,0


$$\Delta P_{\text{полн}}^{\text{1BПЗР}} = K \times \Delta P_{\text{полн}}$$

% открытия регулятора расход	$\begin{array}{c c} 100\% \\ \beta = 0^{\circ} \end{array}$	70% β=45°	50% β=60°
K	1.1	2.0	5.0



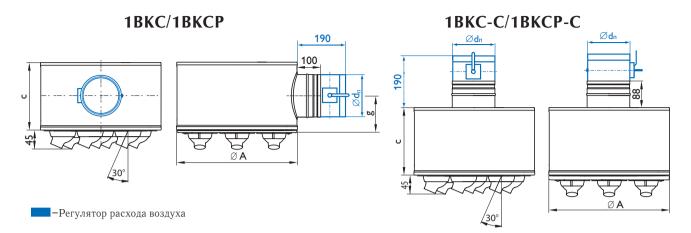

Схемы поворота сопловых ячеек, при формировании различных видов приточных струй

1-сторонняя компактная ()

Воздухораспределительные устройства

Воздухораспределители панельные 1ВКС. 1ВКСР

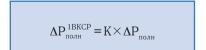
Воздухораспределители панельные 1ВКС, 1ВКСР предназначены для применения в системах вентиляции и кондиционирования помещений общественного и производственного назначения больших объемов и/или с высокими потолками (концертные, спортивные, выставочные залы, стадионы, торговые комплексы, производственные цеха, вокзалы, ангары и т.п.), где необходимо обеспечить раздачу воздуха с высокой дальнобойностью.


Конструктивно воздухораспределители 1ВКС, 1ВКСР состоят из воздухораздающей панели круглой формы, в которой установлены поворотные сопловые ячейки, и камеры статического давления (КСД) с подводящим патрубком круглого сечения. Сопловые ячейки можно поворачивать в диапазоне ±30° в любом направлении от оси. При повороте сопел параллельно в одну сторону на определенный угол от геометрической оси панели (положение 1) отдельные струи и суммарный воздушный поток отклоняются на тот же угол. При этом дальнобойность потока не изменяется. При повороте сопел на угол 30° в разные стороны от геометрической оси (положение 2) направление суммарного потока остается неизменным, а его дальнобойность уменьшается в 2,5 раза. Потери давления (аэродинамическое сопротивление) остаются постоянными при любом положении сопел.

КСД имеет боковой или торцевой подвод и обеспечивает равномерное истечение воздуха из воздухораспределителя. Для изменения и регулирования расхода воздуха воздухораспределители 1ВКСР дополнительно оснащаются регулятором расхода воздуха, установленным в подводящем патрубке КСД.

Воздухораспределители 1ВКС, 1ВКСР устанавливаются на отводах круглых воздуховодов при открытой прокладке воздуховодов или встраиваются в подвесные потолки. Монтаж к воздуховоду осуществляется с помощью самонарезающих винтов. Герметичность соединения с подводящим воздуховодом обеспечивается резиновым уплотнением.

Воздухораспределители изготавливаются из стали и окрашиваются методом порошкового напыления в белый цвет (RAL 9016), ячейки — пластик белого цвета. При изготовлении на заказ возможна окраска воздухораспределителей в любой цвет по каталогу RAL и окраска ячеек по каталогу "Эксклюзив" (см. Приложение 2 на стр. 668).


Характеристики воздухораспределителей 1ВКС, 1ВКСР

Размер	F ₀ ,	Ød₁,	c,	g,	Вес	:, кг
Ø A, mm	M^2	ММ	MM	MM	1BKC	1BKCP
			1BKC/1BKCP			
315	0,0043	124	200	100	3,0	3,6
450	0,0087	199	265	133	5,2	6,0
595	0,0143	249	315	158	9,7	10,8
			1BKC-C/1BKCP-0	C		
315	0,0043	124	200	_	3,0	3,6
450	0,0087	199	200	_	4,6	5,5
595	0,0143	249	200	_	8,2	9,3

Данные для подбора воздухораспределителей 1ВКС, 1ВКСР при подаче воздуха

1 – компактная струя (оси всех сопел расположены параллельно), 2 – коническая струя (оси сопел направлены под углом 30° в разные стороны от центра воздухораспределителя)

				L _{wA} =	=20 д	Б(А)			L _{wA} =	=35 д	Б(А)			L _{wA} =	=45 д	Б(А)			L _{wA} =	= 50 дl	Б(А)	
	вмер , мм	Вид струи	L ₀ , м³/ч	∆Р _{полн} , Па	бой	Дально йность и V _x , л	, M	L ₀ ,	∆Р _{полн} , Па	бой	Дально йносты и V _x , м	, M	L ₀ , м ³ /ч	∆Р _{полн} , Па	бой	цально іность и V _x , л	, м	L ₀ , м ³ /ч	∆Р _{полн} , Па	бой	,ально іность и V _x , л	o, M
			, .	- 1	0,2	0,5	0,75	, .	- 1	0,2	0,5	0,75	, .	- 1	0,2	0,5	0,75	, -	- 1	0,2	0,5	0,75
2	15	1	80	16	10	4,1	2,7	120	36	15	6,1	4,1	200	100	25	10	6,8	270	182	34	14	9,1
3	13	2	00	16	4,1	1,6	1,1	120	30	6,1	2,4	1,6	200	100	10	4,1	2,7	270	102	14	5,5	3,7
4	50	1	180	20	16	6,4	4,3	250	39	22	8,9	6	450	127	40	16	11	560	196	50	20	13
4	30	2	100	20	6,4	2,6	1,7	230	39	8,9	3,6	2,4	430	127	16	6,4	4,3	300	190	20	8,0	5,3
5	05	1	300	21 84 56	37	28	11	7,4	730	122	51	20	14	900	188	63	25	17				
3	595 2 30	300	21	8,4	3,3	2,2	400	37	11	4,5	3	730	123	20	8,1	5,4	300	100	25	10	6,7	

% открытия	100%	70% $\beta = 45^{\circ}$	50%
регулятора расхода	β=0°		β=60°
K	1,1	1,7	3,5

Воздухораспределители панельные 1ВКТ, 1ВКТР, 2ВКТ, 2ВКТР

Воздухораспределители панельные 1ВКТ, 1ВКТР, 2ВКТ, 2ВКТР предназначены для подачи воздуха системами вентиляции и кондиционирования закрученными струями в верхнюю зону, а также непосредственно в обслуживаемую зону помещений общественного и производственного назначения.

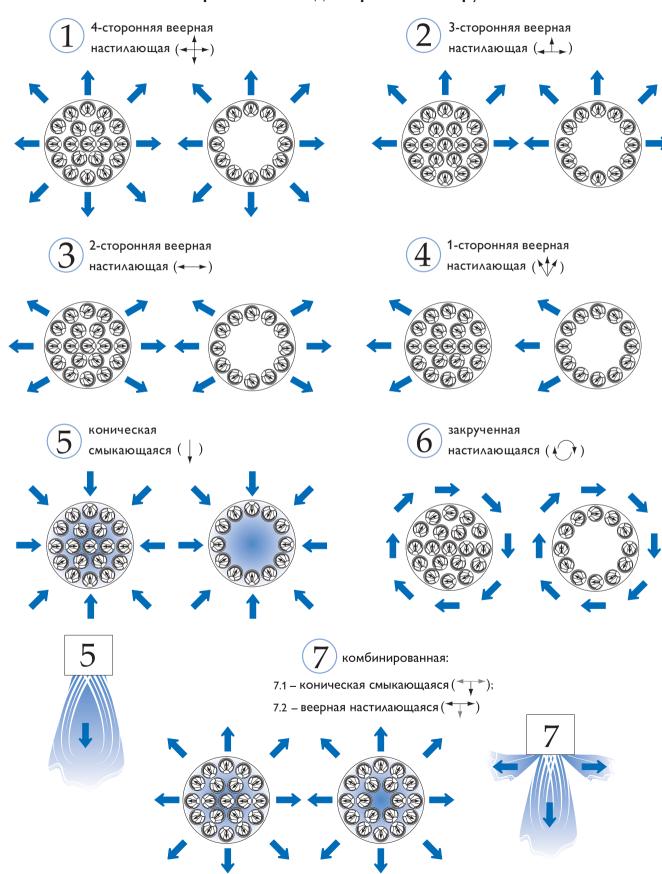
Преимуществом воздухораспределителей 1ВКТ, 1ВКТР, 2ВКТ, 2ВКТР является возможность обеспечить интенсивное перемешивание приточного воздуха с окружающим, которое происходит на сравнительно коротком участке и сопровождается резким падением скоростей и выравниванием температуры в воздушном потоке.

Конструктивно воздухораспределители 1ВКТ, 1ВКТР, 2ВКТ, 2ВКТР состоят из воздухораздающей панели круглой формы, в которой установлены поворотные турбулизирующие ячейки, и камеры статического давления (КСД) с подводящим патрубком круглого сечения. Отличительной особенностью 2ВКТ/2ВКТР от 1ВКТ/1ВКТР является глухая центральная часть. Индивидуальная настройка угла поворота каждой ячейки предоставляет широкие возможности в выборе вариантов распределения воздуха и видов формируемых воздушных струй без изменения уровня шума, объёма подаваемого воздуха и без потери давления. Наиболее интересными из возможных видов струй, формируемых воздухораспределителями, являются настилающаяся, закрученная и комбинированная струи.

Настилающаяся струя, формируемая 1ВКТ, 1ВКТР, 2ВКТ, 2ВКТР, дальнобойна и может быть реализована различными способами. Поворотом ячеек струя может быть направлена в одну, две, три или четыре стороны. Таким образом, 1ВКТ, 1ВКТР, 2ВКТ, 2ВКТР может применяться и как центральный, и как угловой, и как односторонний воздухораспределитель, что позволяет реализовать требуемую систему воздухораспределения одним видом изделий, не внося во внешнее оформление помещения беспорядочного многообразия.

Закрученная струя позволяет раздать в помещении большой объем воздуха на минимальном расстоянии от рабочей зоны, не создавая сквозняков.

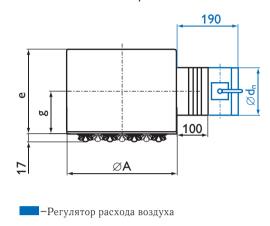
Комбинированной струёй один воздухораспределитель 1ВКТ, 1ВКТР, 2ВКТ, 2ВКТР обеспечивает требования по объёму воздуха всего помещения (настилающийся поток) и, в тоже время, может подавать часть воздуха в локальную рабочую зону (центральный вертикальный поток). Долевое отношение воздуха в вертикальной и настилающейся струе может варьироваться по желанию пользователя.

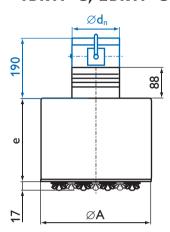

КСД имеет боковой или торцевой подвод и обеспечивает равномерное истечение воздуха из воздухораспределителя. Для изменения и регулирования расхода воздуха воздухораспределители 1ВКТР, 2ВКТР дополнительно оснащаются регулятором расхода воздуха, установленным в подводящем патрубке КСД.

Воздухораспределители 1ВКТ, 1ВКТР, 2ВКТ, 2ВКТР устанавливаются на отводах круглых воздуховодов при открытой прокладке воздуховодов или встраиваются в подвесные потолки. Монтаж к воздуховоду осуществляется с помощью самонарезающих винтов. Герметичность соединения с подводящим воздуховодом обеспечивается резиновым уплотнением.

Воздухораспределители изготавливаются из стали и окрашиваются методом порошкового напыления в белый цвет (RAL 9016), ячейки — пластик белого цвета. При изготовлении на заказ возможна окраска воздухораспределителей в любой цвет по каталогу RAL и окраска ячеек по каталогу "Эксклюзив" (см. Приложение 2 на стр. 668).

Схемы поворота турбулизирующих ячеек при формировании различных видов приточных струй



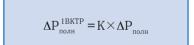

Воздухораспределительные

устройства

1BKT, 2BKT/ 1BKTP, 2BKTP

1BKT-C, 2BKT-C/ 1BKTP-C, 2BKTP-C

Характеристики воздухораспределителей 1ВКТ, 1ВКТР, 2ВКТ, 2ВКТР


Размер	F ₀ ,	Ød₁,	e,	g,	Be	ec,	
Ø A, mm	M ²	ММ	ММ	ММ	I	КГ	
		1BKT/1BKTP			1BKT	1BKTP	
315	0,033	124	200	100	3,0	3,6	
450	0,064	159	250	125	5,5	6,3	
595	0,106	199	280	140	9,4	10,4	
		1BKT-C/1BKTP-C			1BKT-C	1BKTP-C	
315	0,033	124	200	_	3,1	3,6	
450	0,064	159	200	_	5,2	5,9	
595	0,106	199	200	_	8,6	9,6	
		2BKT/2BKTP			2BKT	2BKTP	
315	0,021	124	200	100	3,1	3,7	
450	0,052	159	250	125	5,6	6,3	
595	0,094	199	280	140	9,5	10,4	
		2BKT-C/2BKTP-C			2BKT-C	2BKTP-C	
315	0,021	124	200	_	3,1	3,7	
450	0,052	159	200	_	5,3	6,0	
595	0,094	199	200	_	8,7 9,6		

Данные для подбора воздухораспределителей 1ВКТ, 1ВКТР при подаче воздуха струями

1 – четырехсторонними, 2 – трехсторонними, 3 – двухсторонними, 4 – односторонними, 5 – коническими, 6 – закрученными, 7 – комбинированными (7.1 – коническими смыкающимися, 7.2 – веерными настилающимися)

			дБ(A)			LwA ·	=35 дЕ	(A)			$L_{WA} = 45$	дБ(A)			$L_{WA} = 60$) дБ(А)	
Вид	L ₀ , м³/ч	∆Р _{полн} , Па		сть, м	L ₀ , м³/ч	∆Р _{полн} , Па	бо		, м	L ₀ , м ³ /ч	∆Р _{полн} , Па		сть, м	L ₀ , м³/ч	∆Р _{полн} , Па	бойно	ьно- сть, м / _x , м/с
			0,2	0,5			0,2	0,5	0,75			0,5	0,75			0,5	0,75
1			1,0	0,4			1,2	0,5	_			0,7	0,5			1,2	0,8
2			1,3	0,5			1,7	0,7	0,4			0,9	0,6			1,7	1,1
3			1,6	0,6			2,1	0,8	0,6			1,1	0,8			2,1	1,4
4	140	27	2,2	0,9	180	44	2,9	1,2	0,8	250	86	1,6	1,1	450	277	2,9	1,9
5	1 10			0,9	100			1,2	0,8	230	00	1,6	1,1	150	277	2,9	1,9
-			,	_			,	_	_			_	_			,	0,4
7-1				-				0,4	_			,	0,4				0,7
7-2				_				_	_			,	_			,	0,6
-												,					1,0
								,	,							,	1,4
							,									1,7	
	230	230 17			310	32		,		440	64			780	201	,	2,4
_				,								,					2,4
			,													,	0,5
												,	,				0,9
							,	,				,	-			,	0,7
-												,	,				1,2 1,7
									,							,	
_																	2,1
	330	12			490	26				680	50			1210	158	,	2,9 2,9
	330 12				430			,									0,5
7-1								,								,	1,1
7-1				_					—				,				0,8
7	1 2 3 4 5 6 7-1 2 3 4 5 6 6-7-1 2 3 4 5 6 6-7-1 5 6 6-7-1	Труи Lo, м³/ч 1 2 3 4 5 6 7-1 7-2 1 2 3 4 5 6 7-1 7-2 1 2 3 4 5 6 7-1 3 6 7-1 7-2 1 2 3 4 330 6 7-1	Руи Lo, м³/ч АРполи, Па 1 2 3 4 5 6 7-1 2 1 2 3 4 5 6 7-1 7 6 7-1 7-2 1 1 2 3 4 5 6 7-1 12 6 6 7-1 12 6 12	лид руу	Ма/ч ДРпоми Па бойность, м при V _x м/с 1 2 0,2 0,5 3 1,0 0,4 1,3 0,5 1,6 0,6 2,2 0,9 2,2 0,9 0,4 — 0,9 — 0,6 — 1,1 0,5 — 1,5 0,6 — 1,9 0,8 — 1,0 0,4 — 1,5 0,6 — 1,9 0,8 — 1,0 0,4 — 1,5 0,6 — 1,0 0,4 — 0,5 — 1,1 1,7 0,6 — 1,0 0,4 — 0,8 — — 1,0 0,4 — 0,8 — — 1,7 0,7 — 1,0 0,8 — 1,0 0,8	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Position Positi	рум рум $\frac{1}{100}$ $\frac{1}{10$	100 (μ) 1 (μ) Λ (μ)	Part Part		No continuous 10 10 10 10 10 10 10 No continuous 10 10 10 No continuous 10 No continuo

% открытия	100%	70%	50%
регулятора расхода	β=0°	β=45°	β=60°
K	1,6	5,0	

Воздухораспределительные

устройства

Данные для подбора воздухораспределителей 2ВКТ, 2ВКТР при подаче воздуха струями

1 – четырехсторонними, 2 – трехсторонними, 3 – двухсторонними, 4 – односторонними, 5 – коническими, 6 – закрученными, 7 – комбинированными (7.1 – коническими смыкающимися, 7.2 – веерными настилающимися)

			$L_{wA} = 25$	5 дБ(А)			L_{wA}	= 35 дІ	5(A)			$L_{wA} = 4$	5 дБ(A)			$L_{wA} = 60$) _Д Б(А)	
Р азмер ∅ А , мм	Вид струи	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- сть, м / _х , м/с	L ₀ , м ³ /ч	ΔР _{полн} , Па	бо	Дально йность эи V _x , <i>N</i>	, M	L ₀ ,	∆Р _{полн} , Па		ьно- сть, м / _х , м/с	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- ость, м / _x , м/с
		,	114	0,2	0,5	,	114	0,2	0,5	0,75	, .		0,5	0,75	, .	- 1	0,5	0,75
	1			0,8	_			1,0	0,4	_			0,6	0,4			1,1	0,8
	2			1,0	0,4			1,4	0,6	0,4			0,7	0,5			1,5	1,0
	3			1,3	0,5			1,7	0,7	0,5			0,9	0,6			1,9	1,3
315	4	90	11	1,8	0,7	120	20	2,4	1,0	0,6	160	35	1,3	0,9	330	149	2,7	1,8
313	5	90	11	1,8	0,7	120	20	2,4	1,0	0,6	100	33	1,3	0,9	330	149	2,7	1,8
	6			_	_			0,5	_	_			_	_			0,5	0,3
	7-1			0,7	_			0,9	0,4	_			0,5	_			1,0	0,7
	7-2			0,5	_			0,7	_	_			0,4	_			0,8	0,5
	1			1,0	0,4			1,5	0,6	0,4			0,9	0,6			1,6	1,0
	2		1,3	0,5			2,0	0,8	0,5			1,1	0,8			2,1	1,4	
	3		180 11	1,7	0,7		24	2,5	1,0	0,7	390 5	50	1,4	1,0			2,6	1,7
450	4	180		2,3	0,9	270		3,6	1,4	0,9			2,0	1,3	710	166	3,7	2,4
.00	5			2,3	0,9			3,5	1,4	0,9			2,0	1,3	7.0		3,7	2,4
	6			0,4	_			0,7	_	_			0,4	_			0,7	0,5
	7-1			0,9	0,4			1,3	0,5	0,4			0,8	0,5			1,4	0,9
	7-2			0,7	0,3			1,0	0,4	_			0,6	0,4			1,0	0,7
	1			1,3	0,5			1,8	0,7	0,5			1,0	0,7			1,8	1,2
	2			1,7	0,7			2,3	0,9	0,6			1,4	0,9			2,5	1,6
	3			2,1	0,8			2,9	1,2	0,8			1,7	1,1			3,1	2,0
595	4	310	10	3,0	1,2	430	20	4,1	1,6	1,1	620	41	2,4	1,6	1130	138	4,3	2,9
	5	310 10	3,0	1,2	430	20	4,1	1,6	1,1			2,4	1,6			4,3	2,9	
	6		0,6	-			0,8	-	-			0,5	-			0,8	0,5	
	7-1			1,1	0,5			1,6	0,6	0,4			0,9	0,6			1,6	1,1
	7-2			0,8	_			1,2	0,5	_			0,7	0,5			1,2	0,8

$$\Delta P_{\text{полн}}^{2\text{BKTP}} = K \times \Delta P_{\text{полн}}$$

% открытия регулятора расхода	100% β=0°	70% $\beta = 45^{\circ}$	50% β=60°
K	1,6	5,0	17

Воздухораспределители панельные 1СКП, 1СКПР

Воздухораспределители панельные 1СКП, 1СКПР предназначены для подачи воздуха системами вентиляции и кондиционирования в помещения общественного и производственного назначения вертикальными или горизонтальными потоками.

Конструктивно воздухораспределители 1СКП, 1СКПР состоят из воздухораздающей перфорированной панели круглой формы и камеры статического давления (КСД) с подводящим патрубком круглого сечения. КСД имеет боковой или торцевой подвод и обеспечивает равномерное истечение воздуха из воздухораспределителя. Для изменения и регулирования расхода воздуха воздухораспределители 1СКПР дополнительно оснащаются регулятором расхода воздуха, установленным в подводящем патрубке КСД.

Воздухораспределители 1СКП, 1СКПР устанавливаются на отводах круглых воздуховодов при открытой прокладке воздуховодов или встраиваются в подвесные потолки или стеновые панели. Монтаж к воздуховоду осуществляется с помощью самонарезающих винтов. Герметичность соединения с подводящим воздуховодом обеспечивается резиновым уплотнением.

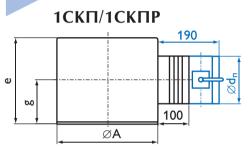
Воздухораспределители изготавливаются из стали и окрашиваются методом порошкового напыления в белый цвет (RAL 9016). При изготовлении на заказ возможна окраска воздухораспределителей в любой цвет по каталогу RAL.

Характеристики

Размер

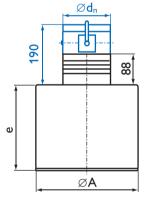
ØA, MM

315


450

595

315

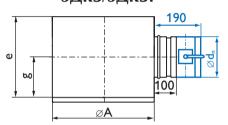

450

595

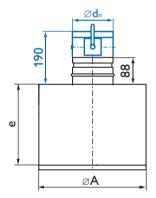
1СКП-С/1СКПР-С

-Регулятор расхода воздуха

Данные для подбора воздухораспределителей 1СКП, 1СКПР при подаче воздуха


		L _{wA} ≤20) дБ (А)	ı		L _{wA} = 2	5 дБ (А))		L _{wA}	=35 дІ	5(A)			L _{wA}	=45 дЕ	(A)	
Размер ∅А, мм	L ₀ ,	L ₀ , ΔР _{полн} , м ³ /ч Па		ьно- ость, м / _х , м/с	L ₀ , м ³ /ч	TIDLY V AVC		одн, бойность, м		бойность, м			∆Р _{полн} , Па	бо	\ально йность и V _x , <i>N</i>	, м		
	, .			0,5	, .	- 1 1 1 1 1	0,2	0,5	,,,,,	114	0,2	0,5	0,75	, .	- 1.0	0,2	0,5	0,75
315	140	9	1,5	0,6	180	15	1,9	0,8	250	29	2,6	1,0	0,7	450	92	4,7	1,9	1,3
450	230	12	1,7	0,7	310	23	2,3	0,9	440	46	3,2	1,3	0,9	780	144	5,7	2,3	1,5
595	330	8	1,8	0,7	490	19	2,7	1,1	680	36	3,8	1,5	1,0	900	63	5,0	2,0	1,3

$\Delta P_{\text{полн}}^{\text{1CK\PiP}} = K \times \Delta P_{\text{полн}}$


% открытия	100%	70%	50%
регулятора расхода	β=0°	β=45°	β=60°
K	1,7	7,0	20

3ДК3/3ДК3Р

3ДК3-С/3ДК3Р-С

Регулятор расхода воздуха

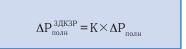
Воздухораспределительные устройства

Воздухораспределители панельные 3ДКЗ, 3ДКЗР

Воздухораспределители панельные ЗДКЗ, ЗДКЗР предназначены для подачи воздуха системами вентиляции и кондиционирования в изотермическом и неизотермическом режимах (нагрева и охлаждения) из верхней зоны помещений горизонтальными настилающимися закрученными струями. Вихревой режим течения приточного воздуха на выходе из воздухораспределителя позволяет повысить коэффициент эжекции окружающего воздуха к приточной струе по сравнению с прямоточными струями и, как следствие, увеличить интенсивность снижения скорости и выравнивания температуры в струе с температурой помещения. Воздухораспределители ЗДКЗ, ЗДКЗР рекомендуется применять в помещениях, где требуется повышенная кратность воздухообмена и избыточная температура приточного воздуха $\Delta t_0 \gg 5^{\circ} \text{C}$ (производственные помещения, концертные и торговые залы, спортивные сооружения, вокзалы, аэропорты и т.д.). Также воздухораспределители ЗДКЗ, ЗДКЗР можно использовать и для удаления воздуха из помещений.

Конструктивно воздухораспределители ЗДКЗ, ЗДКЗР состоят из воздухораздающей панели кругой формы, в центре которой размещен диффузор с закручивающими лопатками, и камеры статического давления (КСД) с подводящим патрубком круглого сечения. КСД имеет боковой или торцевой подвод и обеспечивает равномерное истечение воздуха из воздухораспределителя. Для изменения и регулирования расхода воздуха воздухораспределители ЗДКЗР дополнительно оснащаются регулятором расхода воздуха, установленным в подводящем патрубке КСД.

Воздухораспределители ЗДКЗ, ЗДКЗР устанавливаются на отводах круглых воздуховодов при открытой прокладке воздуховодов или встраиваются в подвесные потолки, при этом обеспечивается настилание горизонтальной струи на потолок. Монтаж к воздуховоду осуществляется с помощью самонарезающих винтов. Герметичность соединения с подводящим воздуховодом обеспечивается резиновым уплотнением.


Воздухораспределители окрашиваются методом порошкового напыления в белый цвет (RAL 9016). При изготовлении на заказ возможна окраска воздухораспределителей в любой цвет по каталогу RAL.

Характеристики воздухораспределителей ЗДКЗ, ЗДКЗР

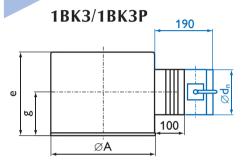
Размер ∅ А , мм	F ₀ , M ²	Ødπ, мм	e, MM	g, MM	B€ K	.с, г					
,	3ДK3/ 3ДK3P 3ДK3										
450	0,114	199	265	133	5,7	6,5					
595	0,181	249	315	158	10,1	11,1					
	3ДІ	КЗ-С/ ЗДКЗР	-C		3ДК3-С	3ДКЗР-С					
450	0,114	199	200	-	5,2	6,1					
595	0,181	249	200	_	8,6	9,6					

Данные для подбора воздухораспределителей ЗДКЗ при подаче воздуха горизонтальными настилающимися закрученными струями

Ī		L _{wA} = 25 дБ(A)						L _{wA} = 35 дБ(A)					L _{wA} = 50 дБ(А)					$L_{wA} = 60$ дБ(A)					
	Размер ∅ А , мм	L ₀ ,	L ₀ , ∆Р _{пол} м³/ч Па		L ₀ , ΔР _{полн} , бой		цально йность и V _x , л	, м	L ₀ , м ³ /ч	∆Р _{полн} , Па	бой	цальной иносты и V _x , л	, М	L ₀ , м ³ /ч	∆Р _{полн} , Па	бой	Цально йность и V _x , л	, м	L ₀ ,	∆Р _{полн} , Па	бой	цально йность и V _x , м	, M
		/VI / ~I	Ha	0,2	0,5	0,75	W1 / 4	Ha	0,2	0,5	0,75	/VI / T	Ha	0,2	0,5	0,75	W1 / T	Πα	0,2	0,5	0,75		
Ī	450	200	9	1,2	0,5	0,3	300	20	1,8	0,7	0,5	600	81	3,7	1,5	1,0	970	211	6,0	2,4	1,6		
	595	320	6	1,6	0,6	0,4	480	15	2,4	0,9	0,6	880	49	4,3	1,7	1,1	1300	107	6,4	2,6	1,7		

% открытия	100%	70%	50%
регулятора расхода	β=0°	β=45°	β=60°
K	1,7	7,0	20,0

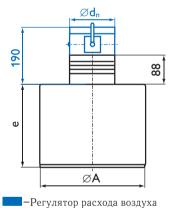
Воздухораспределители панельные 1ВКЗ, 1ВКЗР


Воздухораспределители панельные 1ВКЗ, 1ВКЗР предназначены для подачи воздуха системами вентиляции и кондиционирования в верхнюю зону помещений различного назначения широким коническим потоком с интенсивным перемешиванием воздуха.

Конструктивно воздухораспределители 1ВКЗ, 1ВКЗР состоят из воздухораздающей панели круглой формы, в которой установлены диффузоры с плосколопаточными закручивателями, и камеры статического давления (КСД) с подводящим патрубком круглого сечения. КСД имеет боковой или торцевой подвод и обеспечивает равномерное истечение воздуха из воздухораспределителя. Для изменения и регулирования расхода воздуха воздухораспределители 1ВКЗР дополнительно оснащаются регулятором расхода воздуха, установленным в подводящем патрубке КСД.

Воздухораспределители 1ВКЗ, 1ВКЗР устанавливаются на отводах круглых воздуховодов при открытой прокладке воздуховодов или встраиваются в подвесные потолки. Монтаж к воздуховоду осуществляется с помощью самонарезающих винтов. Герметичность соединения с подводящим воздуховодом обеспечивается резиновым уплотнением.

Воздухораспределители изготавливаются из стали и окрашиваются методом порошкового напыления в белый цвет (RAL 9016). При изготовлении на заказ возможна окраска воздухораспределителей в любой цвет по каталогу RAL.



Характеристики воздухораспределителей 1ВКЗ, 1ВКЗР

Размер	F ₀ ,	Ød _n ,	e,	g,	Ве	ec,					
Ø A, mm	M^2	мм	MM	MM	ŀ	(T					
1BK3/1BK3P 1BK3 1BK3P											
450	0,018	159	250	125	5,8	6,6					
595	0,034	199	280	140	10,0	11,0					
	1B	K3-C/1BK3P-	C		1BK3-C	1BK3P-C					
450	0,018	159	200	_	5,6	6,3					
595	0,034	199	200	_	9,3	10,2					

1BK3-C/1BK3P-C

Данные для подбора воздухораспределителей 1ВКЗ, 1ВКЗР при подаче воздуха

ı			$L_{wA} = 25$	5 дБ(А)		L _{wA} = 35 дБ(А)				L _{wA} = 45 дБ(А)				$L_{wA} = 60$ дБ(A)				
	Размер ∅А, мм	L ₀ , м ³ /ч	∆Р _{полн} , Па	Дально- бойность, м при V_x , м/с		L ₀ ,	ΔР _{полн} , Па	бо	Дально- бойность, м при V _x , м/с		L ₀ , м ³ /ч	∆Р _{полн} , Па	Дально- бойность, м при V_x , м/с		L ₀ , м ³ /ч	ΔР _{полн} , Па	Дально- бойность, м при V _x , м/с	
			/VL / -1	Tiu	0,2	0,5	WI 7-1	ıια	0,2	0,5	0,75	/VL / -1	Ha	0,5	0,75	/VL / -1	Ha	0,5
I	450	70	9	1,7	0,7	110	22	2,6	1,0	0,7	150	41	1,4	1,0	400	293	3,8	2,5
L	595	140	12	2,4	1,0	200	24	3,5	1,4	0,9	280	47	1,9	1,3	600	216	4,2	2,8

% открытия регулятора расхода	100% β=0°	70% $\beta = 45^{\circ}$	50% β=60°
K	1,1	2,0	5,0

Воздухораспределительные

устройства

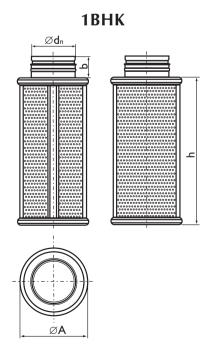
Воздухораспределители низкоскоростные 1ВНК, 1ВНП, 1ВНУ

Воздухораспределители низкоскоростные предназначены для напольного монтажа и устанавливаются:

- ***** 1ВНК в свободном пространстве помещения;
- ***** 1ВНП у стены или в нише;
- ***** 1ВНУ в углу помещения.

Воздухораспределители осущевствляют подачу воздуха непосредственно в рабочую зону помещения с малой скоростью и малым температурным перепадом ($\Delta t = 3$ °C), обеспечивающими принцип вытесняющей вентиляции.

При вентиляции вытеснением воздух поступает в нижнюю зону и не смешивается с воздухом помещения. Он вытесняет его вверх, создавая эффект «плавучести и восходящего распределения». Удаление вытесненного теплого и загрязненного воздуха осуществляется из верхней зоны вытяжной вентиляцией. Таким образом, в помещении обеспечивается постоянный приток чистого воздуха в обслуживаемую зону, который поднимает к потолку тёплый и загрязнённый воздух. Воздух, поступающий через воздухораспределитель, соприкасаясь с тёплыми поверхностями, расположенными в рабочей зоне (технологическое оборудование, компьютеры, лампы, люди и проч.) стремится вверх в естественных конвективных потоках над нагретыми поверхностями, одновременно унося загрязнённые воздушные массы, образующиеся в нижних слоях помещения.


Область применения — общественные, административные и производственные помещения (офисы, рестораны, конференц-залы, магазины, музеи, спортивные сооружения и т.п.), где необходима подача чистого воздуха непосредственно в рабочую зону помещения.

Воздухораспределители изготавливаются из листовой стали и состоят из наружной перфорированной обечайки, днища, крышки с подводящим патрубком и внутренней перфорированной обечайки, обеспечивающей равномерную подачу воздуха по всей воздухораздающей поверхности. Герметичность соединения входного патрубка с воздуховодом обеспечивается резиновым уплотнением.

Низкоскоростные воздухораспределители 1ВНК, 1ВНП и 1ВНУ окрашиваются методом порошкового напыления в белый цвет (RAL 9016), по заказу возможна окраска в любой цвет по каталогу RAL.

Аксессуары

Подставка, декоративный кожух, кронштейны.

Характеристики воздухораспределителей 1ВНК, 1ВНП, 1ВНУ

Модель	F ₀ , M ²	Ød₁, мм	Ø A, mm	а, мм	b, мм	C, MM	h, мм	Вес, кг					
				1BHK									
1BHK 200	0,85	200	290	_	65	_	1000	11,8					
1BHK 250	1BHK 250 1,20 250		340	_	65	_	1200	16,3					
1BHK 315	1,45	315	410	_	65	_	1500	19,7					
1BHK 400	2,77	400	510	_	65	_	1800	33,9					
1BHK 500	3,48	500	640	_	65	_	1800	45,6					
1BHK 630	4,40	630	810	_	65	_	1800	54,7					
1ВНП													
1ВНП 200	0,97	200	335	335	65	_	1200	17,0					
1BHП 250	1,14	250	395	395	65	_	1200	20,7					
1ВНП 315	1,76	315	480	480	65	_	1500	30,5					
1ВНП 400	2,62	400	590	590	65	_	1800	45,2					
1ВНП 500	3,24	500	730	730	65	_	1800	59,0					
1ВНП 630	3,98	630	895	895	65	_	1800	75,8					
				1BHY									
1BHY 200	0,64	200	502	_	65	358	1200	16,7					
1BHY 250	0,75	250	590	_	65	420	1200	20,0					
1BHY 315	1,13	315	707	_	65	503	1500	29,6					
1BHY 400	1,69 400 873		873	_	65	620	1800	44,1					
1BHY 500	2,08	500	1075	_	65	763	1800	56,0					
1BHY 630	2,53	630	1308	_	65	928	1800	70,7					

Данные для подбора воздухораспределителей 1ВНК, 1ВНП, 1ВНУ при подаче воздуха

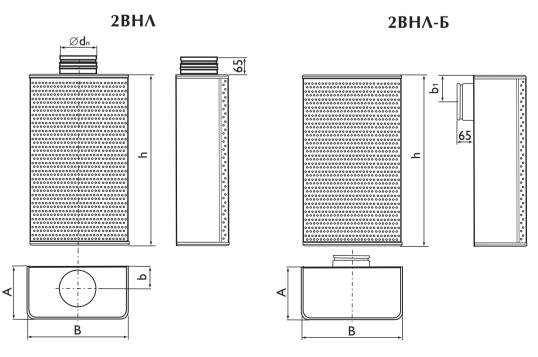
		$L_{wA} = 2$	5 дБ(А))		L _{wA} = 3	5 дБ(А))		L_{wA}	= 45 дІ	5(A)			L _{wA} :	=60 дІ	5(A)	
Модель	L ₀ , м ³ /ч	∆Р _п , Па	Дал бойно при \		L ₀ , м ³ /ч	ΔР _п , Па	Дал бойно при \	сть, м	L ₀ , м ³ /ч	ΔР _п , Па	бо	\ально йность и V _x , л	, м	L ₀ , м ³ /ч	ΔР _п , Па	бо	Δ альнойность V_x , л	, м
			0,2	0,5			0,2	0,5			0,2	0,5	0,75			0,2	0,5	0,75
								1BH	K									
1BHK 200	400	9	0,3	0,1	550	17	0,4	0,2	700	28	0,5	0,2	0,1	1200	83	0,9	0,4	0,2
1BHK 250	700	11	0,4	0,2	900	19	0,6	0,2	1250	36	0,8	0,3	0,2	1920	85	1,2	0,5	0,3
1BHK 315	1050	10	0,6	0,2	1400	18	0,8	0,3	1800	30	1,0	0,4	0,3	3050	85	1,8	0,7	0,5
1BHK 400	1750	11	0,6	0,3	2350	19	1,0	0,4	3150	35	1,3	0,5	0,4	4900	84	2,0	0,8	0,5
1BHK 500	2700	11	1,0	0,4	3800	23	1,4	0,6	4700	35	1,7	0,7	0,5	7350	85	2,7	1,1	0,7
1BHK 630	4000	10	1,3	0,5	5900	22	2,0	0,8	7600	36	2,5	1,0	0,7	11700	85	3,9	1,5	1,0
1ВНП																		
1BHП 200	440	11	0,9	0,4	600	21	1,3	0,5	750	33	1,6	0,6	0,4	1300	98	2,7	1,1	0,7
1BHП 250	630	9	1,2	0,5	850	17	1,7	0,7	1150	31	2,2	0,9	0,6	1900	84	3,7	1,5	1,0
1ВНП 315	840	6	1,3	0,5	1250	14	2,0	0,8	1800	30	2,8	1,1	0,8	3300	99	5,2	2,1	1,4
1ВНП 400	1400	7	1,8	0,7	2010	14	2,6	1,0	2900	29	3,7	1,5	1,0	4980	87	6,4	2,6	1,7
1BHП 500	2200	7	2,5	1,0	3100	14	3,6	1,4	4600	31	5,3	2,1	1,4	8100	95	9,4	3,8	2,5
1ВНП 630	3300	7	3,4	1,4	5000	15	5,2	2,1	7100	31	7,4	3,0	2,0	12000	89	13	5,0	3,3
								1BHY	/				ı				ı	
1BHY 200	380	10	1,3	0,5	550	20	1,9	0,8	750	38	2,6	1,0	0,7	1390	130	4,8	1,9	1,3
1BHY 250	470	6	1,5	0,6	680	12	2,2	0,9	1000	27	3,2	1,3	0,9	1700	78	5,5	2,2	1,5
1BHY 315	790	7	2,1	0,8	1160	14	3,0	1,2	1690	30	4,4	1,8	1,2	2900	90	7,6	3,0	2,0
1BHY 400	1070	5	2,3	0,9	1570	11	3,4	1,3	2300	23	4,9	2,0	1,3	4000	70	8,5	3,4	2,3
1BHY 500	1700	5	3,3	1,3	2600	12	5,0	2,0	3800	26	7,3	2,9	2,0	6300	72	12	4,9	3,2
1BHY 630	2600	5	4,5	1,8	3700	10	6,5	2,6	5400	22	9,4	3,8	2,5	9800	73	17	6,8	4,6

Воздухораспределители низкоскоростные прямоугольные 2ВНЛ

Воздухораспределители низкоскоростные прямоугольные 2ВНЛ с перфорированной лицевой панелью предназначены для подачи воздуха непосредственно в рабочую зону помещения с малой скоростью и малым температурным перепадом ($\Delta t = 3$ °C), обеспечивающими принцип вытесняющей вентиляции.

При вентиляции вытеснением воздух поступает в нижнюю зону и не смешивается с воздухом помещения. Он вытесняет его вверх, создавая эффект «плавучести и восходящего распределения». Удаление вытесненного теплого и загрязненного воздуха осуществляется из верхней зоны вытяжной вентиляцией. Таким образом, в помещении обеспечивается постоянный приток чистого воздуха в обслуживаемую зону, который поднимает к потолку тёплый и загрязнённый воздух. Воздух, поступающий через воздухораспределитель, соприкасаясь с тёплыми поверхностями, расположенными в рабочей зоне (технологическое оборудование, компьютеры, лампы, люди и проч.) стремится вверх в естественных конвективных потоках над нагретыми поверхностями, одновременно унося загрязнённые воздушные массы, образующиеся в нижних слоях помещения.

Область применения 2ВНЛ — производственные, общественные и административные помещения (офисы, рестораны, конференц-залы, магазины, музеи, спортивные сооружения и т.п.), где необходима подача чистого воздуха непосредственно в рабочую зону помещения.

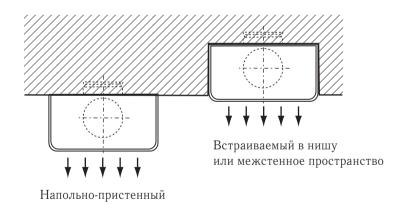

Низкоскоростные воздухораспределители 2ВНЛ устанавливаются в свободном пространстве помещения на полу около стены или в нише.

Воздухораспределители изготавливаются из листовой стали и состоят из наружной перфорированной обечайки, днища, крышки с подводящим патрубком, боковых стенок, задней стенки и внутреннего перфорированного рассекателя, обеспечивающего равномерную подачу воздуха по всей воздухораздающей поверхности. Герметичность соединения входного патрубка с воздуховодом обеспечивается резиновым уплотнением.

Низкоскоростные воздухораспределители 2ВНЛ окрашиваются методом порошкового напыления в белый цвет (RAL 9016), по заказу возможна окраска в любой цвет по каталогу RAL.

Аксессуары

Декоративный кожух, подставка, кронштейны.



Характеристики воздухораспределителей 2ВНЛ

Модель	F ₀ , M ²	Ød₁, мм	А, мм	В, мм	h, мм	b, мм	b ₁, мм	Вес, кг
				2ВНЛ				
2BHΛ 200H	0,72	200	300	600	1200	130	_	23,4
2BHΛ 250H	0,84	250	350	700	1200	155	-	27,5
2BHΛ 315H	1,02	315	425	850	1200	198	_	33,7
2BHΛ 400H	1,20	400	500	1000	1200	230	-	37,9
				2ВНЛ-Б				
2ВНЛ 200Н-Б	0,72	200	300	600	1200	_	145	23,4
2ВНЛ 250Н-Б	0,84	250	350	700	1200	-	170	27,5
2ВНЛ 315Н-Б	1,02	315	425	850	1200	-	200	33,7
2ВНЛ 400Н-Б	1,20	400	500	1000	1200	-	244	37,9

Данные для подбора воздухораспределителей 2ВНЛ при подаче воздуха

	I	$L_{wA} = 2$	5 дБ(А)		$L_{\rm wA}$	=35 д	Б(А)			L _{wA} =	= 45 д	Б(А)			L _{wA} =	=60 дІ	5(A)	
Модель	L ₀ , м ³ /ч	∆Р _п , Па	Дал бойно при \			ΔР _п , Па	бой	цально йность и V _x , л	, м	L ₀ ,	∆Р _п , Па	боі	\ально йность и V _x , л	, м	L ₀ , м ³ /ч	∆Р _п , Па	бой	цально іность и V _x , м	, M
	, .		0,2	0,5	, .		0,2	0,5	0,75	, .	- 1	0,2	0,5	0,75	, .		0,2	0,5	0,75
2ВНЛ 200Н (-Б)	230	6	0,8	0,3	320	11	1,2	0,5	0,3	570	34	2,1	0,8	0,5	1100	128	4,0	1,6	1,1
2ВНЛ 250Н (-Б)	350	5	1,2	0,5	600	15	2,0	0,8	0,5	900	34	3,0	1,2	0,8	1700	123	5,7	2,3	1,5
2ВНЛ 315Н (-Б)	600	6	1,8	0,7	950	15	2,9	1,1	0,8	1500	38	4,5	1,8	1,2	2800	131	8,5	3,4	2,3
2ВНЛ 400Н (-Б)	1000	6	2,8	1,1	1500	14	4,2	1,7	1,1	2400	37	6,7	2,7	1,8	4500	130	13	5,0	3,3

Воздухораспределительные

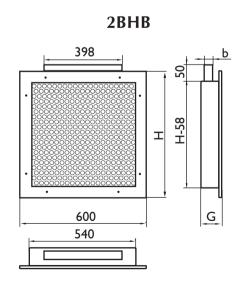
устройства

Воздухораспределители низкоскоростные встраиваемые 2ВНВ

Воздухораспределители низкоскоростные 2ВНВ предназначены для скрытого монтажа в стену либо в элементы интерьера. Встроенные заподлицо, воздухораспределители как бы "сливаются" с интерьером и не занимают полезного пространства помещения.

Воздухораспределители 2ВНВ осуществляют подачу воздуха непосредственно в рабочую зону помещения с малой скоростью и малым температурным перепадом ($\Delta t = 3$ °C), обеспечивающими принцип вытесняющей вентиляции.

При вентиляции вытеснением воздух поступает в нижнюю зону и не смешивается с воздухом помещения. Он вытесняет его вверх, создавая эффект "плавучести и восходящего распределения". Удаление вытесненного теплого и загрязненного воздуха осуществляется из верхней зоны вытяжной вентиляцией. Таким образом, в помещении обеспечивается постоянный приток чистого воздуха в обслуживаемую зону, который поднимает к потолку тёплый и загрязнённый воздух. Воздух, поступающий через воздухораспределитель, соприкасаясь с тёплыми поверхностями, расположенными в рабочей зоне (компьютеры, электроприборы, люди и проч.) стремится вверх в естественных конвективных потоках над нагретыми поверхностями, одновременно унося загрязнённые воздушные массы, образующиеся в нижних слоях помещения.


Воздухораспределители 2ВНВ применимы для любых типов помещений - это общественные, административные или производственные (офисы, рестораны, конференц-залы, музеи, спортивные сооружения и т.п.) помещения, где необходима подача чистого воздуха непосредственно в рабочую

Воздухораспределители изготавливаются из листовой стали и состоят из наружной перфорированной панели и корпуса с подводящим патрубком прямоугольного сечения. Съёмная передняя панель обеспечивает возможность сервисного обслуживания без демонтажа воздухораспределителя и воздуховода.

Наружная панель 2ВНВ окрашивается методом порошкового напыления в белый цвет (RAL 9016), по заказу возможна окраска в любой цвет по каталогу RAL.

Аксессуары

Соединительный воздуховод.

Характеристики воздухораспределителей 2ВНВ

Модель	F ₀ , м ³	b, мм	G, мм	Н, мм	Вес, кг
2BHB 600	0,255	38	75	600	6,1
2BHB 800	0,356	38	75	800	7,9
2BHB 1000	0,457	58	100	1000	10,3
2BHB 1200	0,558	58	100	1200	13,3

Данные для подбора воздухораспределителей 2BHB при подаче воздуха

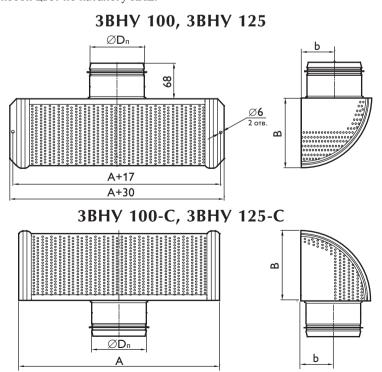
		$L_{wA} = 2$	5 дБ(А)		$L_{wA} = 3!$	5 дБ(А))		L _{wA} :	=45 д	5(A)			L_{wA} :	= 60 дl	5(A)	
Модель	L ₀ ,	∆Р _{полн} , Па	бойно	ьно- сть, м / _x , м/с	L ₀ ,	∆Р _{полн} , Па	бойно	ьно- сть, м / _x , м/с	L ₀ , м ³ /ч	∆Р _{полн} , Па	бо	Δ альной и V_x , м	, M	L ₀ , м ³ /ч	∆Р _{полн} , Па	бо	Δ альнойность V_x , л	, м
20110 622	, .	- 14	0,2	0,5	,	114	0,2	0,5	, .	114	0,2	0,5	0,75	, .		0,2	0,5	0,75
2BHB 600	100	5	0,9	0,4	170	15	1,5	0,6	290	45	2,6	1,0	0,7	560	167	4,9	2,0	1,3
2BHB 800	100	5	0,7	0,3	170	15	1,3	0,5	290	45	2,2	0,9	0,6	560	167	4,2	1,7	1,1
2BHB 1000	230	10	1,5	0,6	340	22	2,2	0,9	500	47	3,3	1,3	0,9	830	129	5,5	2,2	1,5
2BHB 1200	230	10	1,4	0,5	340	22	2,0	0,8	500	47	3,0	1,2	0,8	830	129	4,9	2,0	1,3

Воздухораспределители низкоскоростные ЗВНУ

Воздухораспределители низкоскоростные ЗВНУ предназначены для подачи воздуха системами вентиляции и кондиционирования в зону пребывания людей с малой скоростью, обеспечивая комфортные условия поступления чистого воздуха, без эффекта дутья.

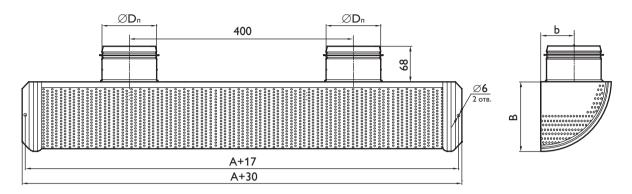
Воздухораспределители ЗВНУ позволяют подавать воздух двумя способами: — подача изотермического ($\Delta t = 0$ °C) или слабонеизотермического (охлаж-

дённым $\Delta t = 3$ °C) воздуха сверху вниз с уровня потолка помещений небольшой высоты (офисы, кассы, вестибюли, комнаты для игр, гардеробные, салоны различного назначения и т.д.). В этом случае изделие монтируется на стене, примыкая к потолку. Возможно два варианта подвода воздуха — сбоку и сверху;

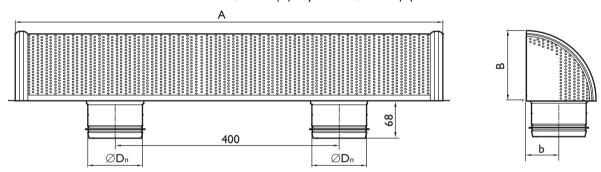

- подача слабонеизотермического (охлаждённого $\Delta t = 3$ °C) воздуха снизу вверх непосредственно в обслуживаемую зону помещений с уровня пола в высокие общественные и административные помещения (конференц-залы, аудитории, залы кинотеатров, театров, спортивных сооружений и т.д.). В этом случае ЗВНУ монтируются непосредственно под креслами на полу. Возможны два варианта подвода воздуха - сбоку и снизу.

Во втором способе подачи воздуха реализуется принцип вытесняющей вентиляции, при котором воздух, поступающий через воздухораспределитель, соприкасаясь с тёплыми поверхностями, расположенными в рабочей зоне стремится вверх, одновременно унося загрязнённые воздушные массы, образующиеся в нижних слоях помещения. Удаление вытесненного теплого и загрязненного воздуха осуществляется из верхней зоны вытяжной вентиляцией. Таким образом, в помещении обеспечиваются постоянные комфортные условия для людей.

Воздухораспределители ЗВНУ выпускаются с одним или двумя круглыми подводящими патрубками диаметром 100 или 125 мм, расположенными сбоку или снизу, и длиной корпуса 450 или 900 мм.


Воздухораспределители изготавливаются из листовой стали и состоят из наружной перфорированной обечайки, боковых стенок с перфорацией, корпуса с подводящим патрубком и внутренней перфорированной обечайки, обеспечивающей равномерность подачи воздуха по всей воздухораздающей поверхности. Герметичность соединения входного круглого патрубка с воздуховодом обеспечивается резиновым уплотнением.

Низкоскоростные воздухораспределители ЗВНУ окрашиваются методом порошкового напыления в белый цвет (RAL 9016), по заказу возможна окраска в любой цвет по каталогу RAL.



3ВНУ 100Д, 3ВНУ 125Д

3ВНУ 100Д-С, 3ВНУ 125Д-С

Характеристики воздухораспределителей ЗВНУ

Модель	F ₀ , M ²	ØD₁, MM	Кол-во патр., шт	А, мм	В,	b, мм	Вес, кг
3BHY 100 (-C)	0,016	100	1	450	132	63	2,0
3BHY 125 (-C)	0,018	125	1	450	15 <i>7</i>	75	3,0
3ВНУ 100Д (-С)	0,031	100	2	900	132	63	3,2
3ВНУ 125Д (-С)	0,038	125	2	900	157	75	4,5

Данные для подбора воздухораспределителей ЗВНУ при подаче воздуха

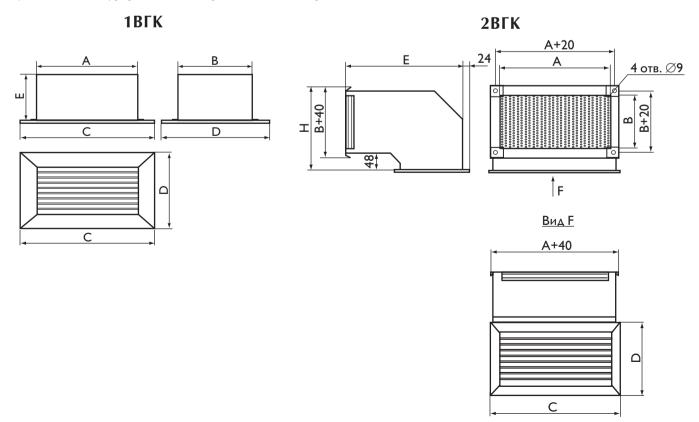
		L _{wA} < 20	дБ(A)			L _{wA} = 20	дБ(A)			L _{wA} = 25	дБ(A)			$L_{wA} = 35$	5 дБ(А)	
Модель	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- сть, м / _x , м/с	L ₀ ,	∆Р _{полн} , Па	бойно	ьно- сть, м / _{х,} м/с	L ₀ ,	∆Р _{полн} , Па	бойно	ьно- сть, м / _х , м/с	L ₀ ,	∆Р _{полн} , Па	бойно	ьно- сть, м / _х , м/с
2PHV 100 (C)	, W. / I	114	0,2	0,5	W 7 1	114	0,2	0,5	W. 7 I	114	0,2	0,5	W 7 1	114	0,2	0,5
3BHY 100 (-C)	60	4	0,7	0,3	70	5	0,8	0,3	90	8	1,0	0,4	140	19	1,6	0,6
3BHY 125 (-C)	60	2	0,6	0,2	80	4	0,8	0,3	110	7	1,1	0,5	170	16	1,7	0,7
3ВНУ 100Д (-С)	120	3	0,9	0,4	160	6	1,3	0,5	200	9	1,6	0,6	350	28	2,8	1,1
3ВНУ 125Д (-С)	130	2	0,9	0,4	170	3	1,2	0,5	220	5	1,6	0,6	370	15	2,6	1,1

Воздухораспределители «Генератор комфорта» 1ВГК, 2ВГК

Воздухораспределители «Генератор комфорта» 1ВГК, 2ВГК предназначены для подачи воздуха системами вентиляции и кондиционирования в небольших помещениях различного назначения (офисы, магазины, купе поезда, каюты кораблей и т.п.).

Особенностью данных изделий являются автоколебания с частотой $5\div15$ Гц, возникающие при прохождении воздуха через воздухораспределитель, благодаря чему формируется быстрозатухающий пульсирующий турбулентный поток воздуха с увеличенным углом раскрытия воздушной струи. Ускоренное затухание воздушной струи и увеличенный угол раскрытия позволяют увеличить избыточную температуру приточного воздуха и уменьшить площадь застойных зон. Небольшие автоколебательные изменения скорости и направления воздуха создают ощущение комфорта — так называемый динамический микроклимат.

Преимущества воздухораспределителей «Генератор комфорта» 1ВГК, 2ВГК:


- * Создание пульсирующего воздушного потока без движущихся деталей;
- ★ Увеличение угла раскрытия воздушной струи до 120°;
- * Повышение интенсивности затухания скорости и избыточной температуры воздуха;
- * Уменьшение дальнобойности воздушной струи (примерно в 3 раза);
- * Уменьшение площади застойных зон в помещении;
- * Заглушение низкочастотного шума, поступающего из вентиляционной сети.

«Генератор комфорта» ВГК состоит из алюминиевой жалюзийной решетки и корпуса, выполненного из оцинкованной стали, внутри которого установлены рассекатель и отражающий экран.

Воздухораспределитель 1ВГК снабжен однорядной жалюзийной решеткой с индивидуально регулируемыми жалюзи и предназначен для настенного монтажа.

Воздухораспределитель 2ВГК снабжен решеткой с жестко закрепленными под определенным углом жалюзи, которая формирует настилающийся на потолок 2-х струйный поток, корпус выполнен в виде отвода 90° и снабжен присоединительным фланцем. 2ВГК предназначен для потолочного монтажа.

Решетки воздухораспределителей 1ВГК и 2ВГК окрашиваются методом порошкового напыления в белый цвет (RAL 9016), корпус — в черный (RAL 9017). При изготовлении на заказ возможна окраска решетки в любой цвет по каталогу RAL или текстурирование (см. Приложение 3 на стр. 669).

Характеристики воздухораспределителей 1ВГК, 2ВГК

Модель	F ₀ , M ²	А, мм	В, мм	С, мм	D, мм	Е, мм	Н, мм	Вес, кг
1BΓK 200 × 100	0,008	195	95	236	136	174	_	1,2
1BГК $300 imes 100$	0,016	295	95	336	136	218	_	2,0
1ΒΓΚ 300 × 150	0,024	295	145	336	186	216	_	2,3
1ΒΓΚ 400 × 150	0,038	395	145	436	186	266	-	3,4
1 ΒΓΚ 400×200	0,053	395	195	436	236	288	_	4,1
2ΒΓΚ 200 × 100	0,009	200	100	250	150	300	170	2,1
2ΒΓΚ 300 × 100	0,013	300	100	350	150	300	170	2,8
2ΒΓΚ $300 imes 150$	0,020	300	150	350	200	350	220	3,5
2ΒΓΚ 400 × 150	0,027	400	150	450	200	350	220	4,3
2 B Γ K $400 imes 200$	0,037	400	200	450	250	400	270	5,2

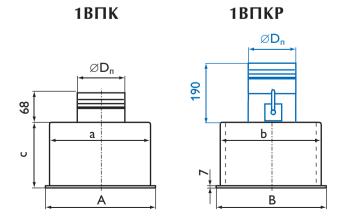
Данные для подбора воздухораспределителей 1BГК, 2BГК при подаче воздуха

	I	L _{wA} = 3!	5 дБ(А	.)		L _{wA} =	=45 д	Б(А)			L _{wA} =	=50 д	Б(А)			L _{wA} =	=60 д	Б(A)	
Модель	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- сть, м / _x , м/с	L ₀ , м ³ /ч	∆Р _{полн} , Па	бой	цально йность и V _x , л	, м	L ₀ , м ³ /ч	∆Р _{полн} , Па	боі	цально йность и V _x , л	, м	L ₀ , м ³ /ч	∆Р _{полн} , Па	бой	Дально йность и V _x , л	, M
			0,2	0,5			0,2	0,5	0,75			0,2	0,5	0,75			0,2	0,5	0,75
1BΓK 200 × 100	50	12	1,6	0,7	80	30	2,6	1,0	0,7	110	57	3,6	1,4	1,0	160	121	5,2	2,1	1,4
1BΓK 300 × 100	90	17	2,1	0,8	130	35	3,0	1,2	0,8	160	53	3,7	1,5	1,0	220	100	5,1	2,0	1,4
1BГК 300×150	140	17	2,6	1,1	200	35	3,8	1,5	1,0	250	55	4,7	1,9	1,3	350	108	6,6	2,8	1,8
1ΒΓΚ 400 × 150	200	20	3,0	1,2	280	39	4,2	1,7	1,1	340	57	5,1	2,0	1,4	500	123	7,5	3,0	2,0
1 ΒΓΚ 400×200	270	20	3,4	1,4	390	42	4,9	2,0	1,3	480	63	6,1	2,4	1,6	700	134	8,9	3,5	2,4
2BΓK 200 × 100	50	22	1,5	0,6	80	55	2,4	1,0	0,6	110	105	3,3	1,3	0,9	160	222	4,8	1,9	1,3
2BΓK 300 × 100	85	25	2,1	0,8	130	60	3,2	1,3	0,8	170	102	4,1	1,7	1,1	240	203	5,8	2,3	1,6
2BΓK 300 × 150	140	32	2,7	1,1	200	65	3,9	1,6	1,0	250	101	4,9	1,9	1,3	350	198	6,8	2,7	1,8
2 B Γ K $400 imes 150$	190	32	3,2	1,3	270	64	4,5	1,8	1,2	320	90	5,4	2,1	1,4	500	220	8,4	3,4	2,2
2ВГК $400 imes 200$	270	36	3,9	1,6	390	76	5,6	2,2	1,5	480	115	6,9	2,8	1,8	700	245	10	4,0	2,7

Воздухораспределители «Генератор комфорта» 1ВПК, 1ВПКР

Воздухораспределители «Генератор комфорта» 1ВПК/1ВПКР предназначены для подачи воздуха системами вентиляции и кондиционирования в помещениях различного назначения с высокими потолками (киноконцертные и конференц-залы, залы вокзалов и аэропортов, торговые центры, а также производственные и складские помещения).

Особенностью данных изделий являются автоколебания с частотой 5÷20 Гц, возникающие при прохождении воздуха через воздухораспределитель, благодаря чему формируется быстрозатухающий пульсирующий турбулентный поток воздуха с увеличенным углом раскрытия воздушной струи. Ускоренное затухание воздушной струи и увеличенный угол раскрытия позволяют увеличить избыточную температуру приточного воздуха и уменьшить площадь застойных зон. Небольшие автоколебательные изменения скорости и направления воздуха создают ощущение комфорта — так называемый динамический микроклимат.


Преимущества воздухораспределителей «Генератор комфорта» 1ВПК, 1ВПКР:

- ***** Создание пульсирующего воздушного потока без движущихся деталей;
- * Увеличение угла раскрытия воздушной струи;
- *Повышение интенсивности затухания скорости и избыточной температуры воздуха;
- * Увеличение дальнобойности воздушной струи за счет взаимодействия отдельных струй истекающих из отверстий;
- * Уменьшение площади застойных зон в помещении;
- ★ Обеспечение большей зоны воздушного комфорта в помещении при одинаковом удельном расходе приточного воздуха на 1м² площади.

«Генератор комфорта» 1ВПК состоит из воздухораздающей панели, в которой выполнены круглые отверстия со специальным экраном, и камеры статического давления (КСД) с подводящим патрубком круглого сечения.

Воздухораспределитель 1ВПКР оснащен регулирующим устройством для изменения расхода воздуха, установленным в подводящем патрубке КСД. Воздухораспределители 1ВПК/1ВПКР устанавливаются на отводах круглых воздуховодов при открытой прокладке воздуховодов или встраиваются в подвесные потолки.

Материал панели – сталь, окрашенная методом порошкового напыления, стандартный цвет – глянцевый металлик (RAL 9006). Материал КСД – неокрашенная оцинкованная сталь. При изготовлении изделия на заказ возможна окраска панели и КСД в любой цвет по каталогу RAL.

Характеристики воздухораспределителей 1ВПК, 1ВПКР

Модель	F ₀ , M ²	А, мм	В, мм	ØD _п , мм	а, мм	b, мм	C, MM	Вес, кг
1ВПК 300×300	0,033	300	300	124	270	270	200	2,8
1BΠK 450 × 450	0,074	450	450	159	420	420	200	5,3
1BΠK 595 × 595	0,131	595	595	199	570	5 <i>7</i> 0	200	8,4
1ΒΠΚΡ 300 × 300	0,033	300	300	124	270	270	200	3,4
1ΒΠΚΡ 450 × 450	0,074	400	400	159	420	420	200	6,0
1ΒΠΚΡ 595 × 595	0,131	595	595	199	570	570	200	9,3

Данные для подбора воздухораспределителей 1BПК, 1BПКР при подаче воздуха

			$L_{wA} = 2$	дБ(A)	1		$L_{wA} = 3!$	дБ(A))		L _{wA}	= 45 дІ	5(A)			$L_{wA} = 60$) дБ (А))
	Модель	L ₀ , м ³ /ч	∆Р _{полн} , Па	الواسم	ьно- сть, м / _x , м/с	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- сть, м / _x , м/с	L ₀ , м ³ /ч	∆Р _{полн} , Па	бо	Δ альнойность V_x , л	, м	L ₀ , м ³ /ч	∆Р _{полн} , Па	бойно	ьно- сть, м / _x , м/с
		, .		0,2	0,5	, -		0,2	0,5	, -		0,2	0,5	0,75	, -		0,5	0,75
1	ВПК (Р) $300 imes 300$	110	15	3,5	1,4	160	31	5,2	2,1	240	69	7,7	3,1	2,1	430	223	5,5	3,7
1	ВПК (P) $450 imes 450$	185	9	3,2	1,3	280	20	4,9	2,0	430	48	7,5	3,0	2,0	810	169	5,6	3,8
1	ВПК (P) $595 imes 595$	280	7	2,6	1,0	410	16	3,8	1,5	600	33	5,6	2,2	1,5	1100	112	4,1	2,7

$$\Delta P_{\text{полн}}^{\text{1BПКР}} = K \times \Delta P_{\text{полн}}$$

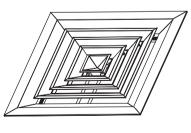
% открытия	100%	70%	50%
регулятора расхода	β=0°	β=45°	β=60°
K	1,6	5,0	17,0

Воздухораздающие блоки

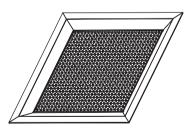
для "чистых помещений" ВБД, ВБП-М, ВБС-М

Воздухораздающие блоки с фильтрами высокой эффективности (класс очистки HEPA) предназначены для организации воздухообмена в «чистых помещениях» лечебных учреждений, предприятиях фармацевтической, электронной, пищевой и др. отраслей промышленности.

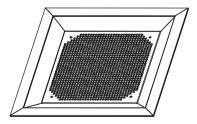
Воздухораздающие блоки выпускаются в 3-х исполнениях, отличающихся типом панелей: с диффузорной панелью (ВБД), подающей воздух горизонтальными настилающимися (турбулентными) струями, с перфорированной (ВБП-М) и сотовой (ВБС-М) панелями, обеспечивающими вертикальную подачу воздуха ламинарным потоком. Изготавливается 4 типоразмера ВБ: 450×450 , 595×595 , 750×750 и 750×450 мм, в корпусе которых размещается фильтр высокой эффективности класса H11, H13 или H14 толщиной 78, 150 или 300 мм.


Воздухораздающие блоки состоят из герметичного стального сварного корпуса с подводящим боковым или торцевым патрубком круглого сечения или боковым патрубком прямоугольного сечения и воздухораздающей лицевой панели. При необходимости в подводящей магистрали перед ВБ может быть установлен герметичный запорный клапан. Для контроля за загрязнением фильтра на корпусе установлены специальные штуцеры для измерения статического давления до и после фильтра.

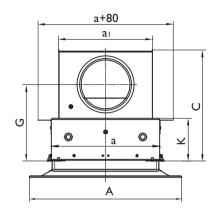
Конструкция воздухораздающего блока обеспечивает легкий доступ к кассетному фильтру и его замену путем снятия и последующей установки воздухораздающей панели. Также конструкция ВБ обеспечивает плотный прижим уплотнителя, расположенного на рамке кассетного фильтра, к поверхности ВБ, что исключает утечки воздуха из области «грязного» воздуха, находящегося до фильтра, в пространство помещения, минуя фильтр.

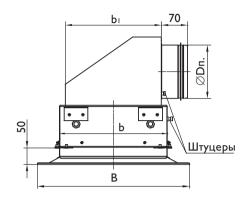

Монтаж изделий — потолочный, как правило, в подшивном пространстве. Герметичность соединения круглого входного патрубка с воздуховодом обеспечивается резиновым уплотнением, для прямоугольного патрубка при подсоединении к воздуховоду необходимо установить герметизирующее уплотнение.

Все наружные и внутренние поверхности воздухораздающего блока окрашиваются методом порошкового напыления в белый цвет (RAL 9016). При изготовлении на заказ возможна окраска в любой цвет по каталогу RAL.

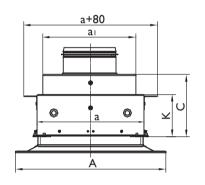

Вид панелей

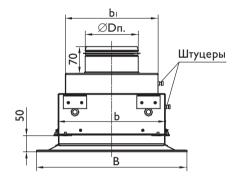
Диффузорная панель (ВБД)

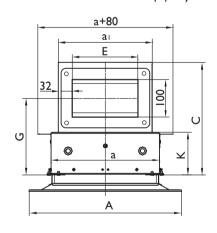

Сотовая панель (ВБС-М)

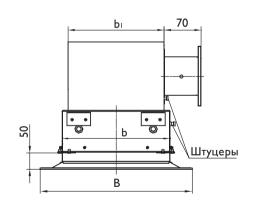


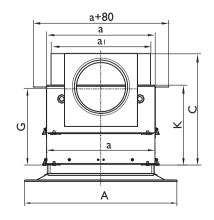
Перфорированная панель (ВБП-М)

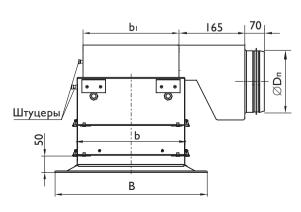



ВБД, ВБП-М, ВБС-М




ВБД С, ВБП-М С, ВБС-М С




ВБД П, ВБП-М П, ВБС-М П

ВБД У, ВБП-М У, ВБС-М У

Воздухораспределительные

устройства

Характеристики воздухораздающих блоков ВБД, ВБП-М, ВБС-М с толщиной фильтра 78 мм

Размер	F ₀ ,	ØD _n ,	a × b,	$a_1 \times b_1$	C,	G,	Ε,	K,	Размер
$A \times B$, mm	M^2	MM	мм	мм	мм	мм	мм	мм	фильтра, мм
				ВБД, ВБ	П-М, ВБС-М				
450 × 450	0,083	159	320×320	280×280	328	225	-		$305 \times 305 \times 78$
595 × 595	0,192	199	475×475	430 × 430	368	245	-	126	$457 \times 457 \times 78$
750 × 750	0,346	249	625×625	585×585	418	270	-	120	$610 \times 610 \times 78$
750 × 450	0,192	199	625×320	585 × 280	368	245	-		$610 \times 305 \times 78$
				ВБД С, ВБГ	I-M С, ВБС-N	۸ C			
450 × 450	0,083	159	320×320	280×280	186	-	-		$305 \times 305 \times 78$
595 × 595	0,192	199	475×475	430 × 430	186	-	-	126	$457 \times 457 \times 78$
750 × 750	0,346	249	625×625	585×585	196	-	-	120	$610 \times 610 \times 78$
750 × 450	0,192	199	625×320	585 × 280	196	-	-		$610 \times 305 \times 78$
				ВБД П, ВБП	I-М П, ВБС- <i>N</i>	и П			
450 × 450	0,083	-	320×320	280×280	328	225	200		$305 \times 305 \times 78$
595 × 595	0,192	-	475×475	430 × 430	368	245	335	126	$457 \times 457 \times 78$
750 × 750	0,346	-	625×625	585×585	418	270	500	120	$610 \times 610 \times 78$
750 × 450	0,192	-	625×320	585 × 280	368	245	335		$610 \times 305 \times 78$
				ВБД У, ВБГ	I-M У, ВБС-N	ΛY			
450 × 450	0,083	159	320×320	280×280	223	125	-		$305 \times 305 \times 78$
595 × 595	0,192	199	475×475	430 × 430	263	145	-	126	$457 \times 457 \times 78$
750 × 750	0,346	249	625×625	585×585	313	170	-	120	$610 \times 610 \times 78$
750 × 450	0,192	199	625×320	585 × 280	263	145	-		$610 \times 305 \times 78$

Характеристики воздухораздающих блоков ВБД, ВБП-М, ВБС-М с толщиной фильтра 150 мм

Размер	F ₀ ,	ØD _n ,	$\mathbf{a} \times \mathbf{b}$,	$a_1 \times b_1$,	С,	G,	Ε,	Κ,	Размер фильтра,
$A \times B$, mm	M^2	MM	MM	мм	мм	мм	мм	мм	ММ
				ВБД, ВІ	5П-М, ВБС- Л	1			
450 × 450	0,083	159	320 × 320	280 × 280	400	297	-		$305\times305\times150$
595 × 595	0,192	199	475×475	430 × 430	440	317	-	198	$457 \times 457 \times 150$
750 × 750	0,346	249	625×625	585×585	490	342	-	190	610 × 610 × 150
750 × 450	0,192	199	625×320	585×280	440	317	-		$610\times305\times150$
				ВБД С, ВБ	П-М С, ВБС-	МС			
450 × 450	0,083	159	320 × 320	280×280	258	-	-		$305\times305\times150$
595 × 595	0,192	199	475 × 475	430 × 430	258	-	-	198	$457 \times 457 \times 150$
750 × 750	0,346	249	625×625	585×585	268	-	-	190	610 × 610 × 150
750 × 450	0,192	199	625×320	585×280	268	-	-		$610\times305\times150$
				ВБД П, ВБ	П-М П, ВБС-	ΜП			
450 × 450	0,083	-	320 × 320	280 × 280	400	297	200		$305\times305\times150$
595 × 595	0,192	_	475×475	430×430	440	317	335	198	$457 \times 457 \times 150$
750 × 750	0,346	-	625×625	585×585	490	342	500	190	$610\times610\times150$
750 × 450	0,192	-	625×320	585×280	440	317	335		$610\times305\times150$
				ВБД У, ВБ	П-М У, ВБС-	МУ			
450 × 450	0,083	159	320×320	280×280	295	197	-		$305 \times 305 \times 78$
595 × 595	0,192	199	475 × 475	430 × 430	335	217	-	198	$457 \times 457 \times 78$
750 × 750	0,346	249	625×625	585×585	385	242	-	190	$610 \times 610 \times 78$
750 × 450	0,192	199	625 × 320	585 × 280	335	217	-		$610 \times 305 \times 78$

Характеристики воздухораздающих блоков ВБД, ВБП-М, ВБС-М с толщиной фильтра 300 мм

Размер	F ₀ ,	ØD _n ,	a × b,	$a_1 \times b_1$	C,	G,	E,	K,	Размер фильтра,		
$A \times B$, MM	M^2	мм	мм	мм	мм	MM	мм	MM	MM		
ВБД, ВБП-М, ВБС-М											
450 × 450	0,083	159	320 × 320	280×280	550	447	-		$305 \times 305 \times 300$		
595 × 595	0,192	199	475 × 475	430 × 430	590	467	-	348	$457 \times 457 \times 300$		
750 × 750	0,346	249	625×625	585×585	640	492	-	340	610 × 610 × 300		
750 × 450	0,192	199	625×320	585×280	590	467	_		$610 \times 305 \times 300$		
	ВБД С, ВБП-М С, ВБС-М С										
450 × 450	0,083	159	320×320	280×280	408	-	-		$305 \times 305 \times 300$		
595 × 595	0,192	199	475×475	430×430	408	-	-	348	$457 \times 457 \times 300$		
750 × 750	0,346	249	625×625	585×585	418	-	-		610 × 610 × 300		
750 × 450	0,192	199	625×320	585×280	418	-	-		$610 \times 305 \times 300$		
				ВБД П, ВБ	П-М П, ВБС-	-М П					
450 × 450	0,083	-	320×320	280×280	550	447	200		$305 \times 305 \times 300$		
595 × 595	0,192	_	475×475	430×430	590	467	335	348	$457 \times 457 \times 300$		
750 × 750	0,346	-	625×625	585×585	640	492	500	340	610 × 610 × 300		
750 × 450	0,192	-	625×320	585×280	590	467	335		$610 \times 305 \times 300$		
				ВБД У, ВБ	П-М У, ВБС-	M Y					
450 × 450	0,083	159	320×320	280×280	445	347	-	2.40	$305 \times 305 \times 78$		
595 × 595	0,192	199	475×475	430 × 430	485	367	-		$457 \times 457 \times 78$		
750 × 750	0,346	249	625×625	585×585	535	392	_	348	$610 \times 610 \times 78$		
750 × 450	0,192	199	625×320	585×280	485	367	-		$610 \times 305 \times 78$		

Вес воздухораздающих блоков ВБД, ВБП-М, ВБС-М с толщиной фильтра 78, 150 и 300 мм

		Вес, кг (не более)												
Размер	ВБД	ВБП-М	ВБС-М	ВБД	ВБП-М	ВБС-М	ВБД	ВБП-М	ВБС-М					
$\mathbf{A} \times \mathbf{B}$, mm	Толщина фильтра 78 мм Толщина фильтра 150 мм Толщина фильтра 300													
ВБД, ВБП-М, ВБС-М														
450 × 450	8,5	8,2	8,4	10,2	9,8	10,0	12,3	12,0	12,2					
595 × 595	14,3	13,8	14,1	16,5	16,0	16,3	19,9	19,4	19,7					
750 × 750	21,4	20,6	21,4	24,4	23,6	24,4	28,8	28,0	28,8					
750 × 450	13,5	13,2	13,9	15 <i>,</i> 7	15,4	16,1	19,1	18,8	19,5					
			l	ВБД С, ВБП-Л	и С, ВБС-М С									
450 × 450	7,2	7,0	7,1	8,8	8,6	8,7	11,0	10,8	10,9					
595 × 595	11,4	11,0	11,4	13,6	13,2	13,6	17,0	16,6	17,0					
750 × 750	16,9	16,2	17,0	19,9	19,2	20,0	24,3	23,6	24,4					
750 × 450	11,2	10,8	11,6	13,4	13,0	13,8	16,8	16,4	17,2					
			E	ВБД П, ВБП- Л	<mark>и П, ВБС-М</mark> П	I								
450 × 450	9,5	9,3	9,4	11,1	10,9	11,0	13,3	13,1	13,2					
595 × 595	14,7	14,4	14,8	1 <i>7,</i> 0	16,6	17,0	20,4	20,0	20,4					
750 × 750	21,3	20,5	21,4	24,3	23,6	24,4	28,7	27,4	28,8					
750 × 450	14,5	14,1	14,9	16,7	16,3	17,1	20,1	19,7	20,5					
			I	ВБД У <mark>, В</mark> БП-Л	и <mark>У, ВБС-</mark> М У	,								
450 × 450	9,4	9,1	9,3	11,1	10,7	10,9	13,2	13,0	13,1					
595 × 595	15,2	14,7	15,0	17,4	16,9	17,2	20,7	20,3	20,6					
750 × 750	22,6	21,8	22,6	25,6	24,8	25,6	30,0	29,2	30,0					
750 × 450	14,6	14,3	15,0	16,8	16,5	17,2	20,2	19,9	20,6					

Данные для подбора воздухораздающих блоков ВБД, ВБП-М, ВБС-М с фильтром класса Н11

Размер А × В, мм			Тип воздухораздающего блока										
	F ₀ ,	L ₀ , м³/ч		ВБД			ВБП-М			ВБС-М	ВБС-М		
	M ²		ΔР _{полн} ,		йность, м, ′ _х , м/с	ΔР _{полн} ,		йность, м, / _х , м/с	$\Delta P_{\text{полн,}}$	Дальнобоі при V			
			Па	0,2	0,5	Па	0,2	0,5	Па	0,2	0,5		
				С фильт	ром Н11 то	олщиной 78	8 мм						
450 × 450	0,083	130	58	1,4	0,6	58	1,3	0,5	58	3,8	1,5		
595 × 595	0,192	300	61	2,1	0,8	61	2,0	0,8	61	5,7	2,3		
750 × 750	0,346	550	63	2,8	1,1	63	2,7	1,1	63	7,8	3,1		
750 × 450	0,192	260	59	1,8	0,7	59	1,7	0,7	59	5,0	2,0		
				С фильтр	ом Н11 то	лщиной 15	0 мм						
450 × 450	0,083	150	64	1,6	0,6	64	1,5	0,6	64	4,3	1,7		
595 × 595	0,192	340	68	2,4	0,9	68	2,3	0,9	68	6,4	2,6		
750 × 750	0,346	600	70	3,1	1,2	70	3,0	1,2	70	8,5	3,4		
750 × 450	0,192	300	66	2,1	0,8	66	2,0	0,8	66	5,7	2,3		
				С фильтр	ом Н11 то	лщиной 30	0 мм						
450 × 450	0,083	260	96	2,8	1,1	96	2,6	1,1	96	7,5	3,0		
595 × 595	0,192	600	109	4,2	1,7	109	4,0	1,6	109	11	4,6		
750 × 750	0,346	1100	118	5,7	2,3	118	5,4	2,2	118	16	6,2		
750 × 450	0,192	600	109	4,2	1,7	109	4,0	1,6	109	11	4,6		

Данные для подбора воздухораздающих блоков ВБД, ВБП-М, ВБС-М с фильтром класса H13

		L ₀ , м³/ч	Тип воздухораздающего блока									
Размер	F ₀ ,			ВБД			ВБП-М			ВБС-М		
A × B, MM	M ²		ΔР _{полн} ,		йность, м, / _х , м/с	$\Delta P_{\text{полн,}}$		йность, м, / _x , м/с	$\Delta P_{\text{полн,}}$	Дальнобої при V		
			Па	0,2	0,5	Па	0,2	0,5	Па	0,2	0,5	
				С фильт	ром Н13 то	олщиной 78	8 мм					
450 × 450	0,083	130	123	1,4	0,6	123	1,3	0,5	123	3,8	1,5	
595 × 595	0,192	300	126	2,1	0,8	126	2,0	0,8	126	5,7	2,3	
750 × 750	0,346	550	128	2,8	1,1	128	2,7	1,1	128	7,8	3,1	
750 × 450	0,192	260	124	1,8	0,7	124	1,7	0,7	124	5,0	2,0	
				С фильтр	ом Н13 то	лщиной 15	0 мм					
450 × 450	0,083	150	134	1,6	0,6	134	1,5	0,6	134	4,3	1,7	
595 × 595	0,192	340	138	2,4	0,9	138	2,3	0,9	138	6,4	2,6	
750 × 750	0,346	600	140	3,1	1,2	140	3,0	1,2	140	8,5	3,4	
750 × 450	0,192	300	136	2,1	0,8	136	2,0	0,8	136	5,7	2,3	
				С фильтр	ом Н13 то	лщиной 30	00 мм					
450 × 450	0,083	260	176	2,8	1,1	176	2,6	1,1	176	7,5	3,0	
595 × 595	0,192	600	189	4,2	1,7	189	4,0	1,6	189	11	4,6	
750 × 750	0,346	1100	198	5,7	2,3	198	5,4	2,2	198	16	6,2	
750 × 450	0,192	600	189	4,2	1,7	189	4,0	1,6	189	11	4,6	

Данные для подбора воздухораздающих блоков ВБД, ВБП-М, ВБС-М с фильтром класса H14

		L ₀ , M³/ч	Тип воздухораздающего блока									
Размер	F ₀ , M ²			ВБД			вбП-М			ВБС-М	ВБС-М	
$A \times B$, MM			$\Delta P_{\text{полн,}}$		йность, м, / _х , м/с	$\Delta P_{\text{полн,}}$		йность, м, / _х , м/с	$\Delta P_{\text{полн,}}$		йность, м, / _х , м/с	
			Па	0,2	0,5	Па	0,2	0,5	Па	0,2	0,5	
				С фильт	ром Н14 т	олщиной 7	8 мм					
450 × 450	0,083	130	143	1,4	0,6	143	1,3	0,5	143	3,8	1,5	
595 × 595	0,192	300	146	2,1	0,8	146	2,0	0,8	146	5,7	2,3	
750 × 750	0,346	550	148	2,8	1,1	148	2,7	1,1	148	7,8	3,1	
750 × 450	0,192	260	144	1,8	0,7	144	1,7	0,7	144	5,0	2,0	
				С фильт	ом Н14 то	лщиной 15	50 мм					
450 × 450	0,083	150	184	1,6	0,6	184	1,5	0,6	184	4,3	1,7	
595 × 595	0,192	340	188	2,4	0,9	188	2,3	0,9	188	6,4	2,6	
750 × 750	0,346	600	190	3,1	1,2	190	3,0	1,2	190	8,5	3,4	
750 × 450	0,192	300	186	2,1	0,8	186	2,0	0,8	186	5,7	2,3	
				С фильтן	ом Н14 то	лщиной 30	00 мм					
450 × 450	0,083	260	201	2,8	1,1	201	2,6	1,1	201	7,5	3,0	
595 × 595	0,192	600	214	4,2	1,7	214	4,0	1,6	214	11	4,6	
750 × 750	0,346	1100	223	5,7	2,3	223	5,4	2,2	223	16	6,2	
750 × 450	0,192	600	214	4,2	1,7	214	4,0	1,6	214	11	4,6	